【題目】設(shè)函數(shù)f(x)=ex+sinx(e為自然對數(shù)的底數(shù)),g(x)=ax,F(xiàn)(x)=f(x)﹣g(x).
(1)若x=0是F(x)的極值點(diǎn),且直線x=t(t≥0)分別與函數(shù)f(x)和g(x)的圖象交于P,Q,求P,Q兩點(diǎn)間的最短距離;
(2)若x≥0時(shí),函數(shù)y=F(x)的圖象恒在y=F(﹣x)的圖象上方,求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:因?yàn)镕(x)=ex+sinx﹣ax,所以F'(x)=ex+cosx﹣a,
因?yàn)閤=0是F(x)的極值點(diǎn),所以F'(0)=1+1﹣a=0,a=2.
又當(dāng)a=2時(shí),若x<0,F(xiàn)'(x)=ex+cosx﹣a<1+1﹣2=0,
所以F'(x)在(0,+∞)上為增函數(shù),所以F'(x)>F'(0)=1+1﹣2=0,所以x=0是F(x)的極小值點(diǎn),
所以a=2符合題意,所以|PQ|=et+sint﹣2t.令h(x)=ex+sinx﹣2x,即h'(x)=ex+cosx﹣2,
因?yàn)閔'(x)=ex﹣sinx,當(dāng)x>0時(shí),ex>1,﹣1≤sinx≤1,
所以h'(x)=ex﹣sinx>0,所以h'(x)=ex+cosx﹣2在(0,+∞)上遞增,
所以h'(x)=ex+cosx﹣2>h'(0)=0,∴x∈[0,+∞)時(shí),h(x)的最小值為h(0)=1,所以|PQ|min=1.
(2)解:令(x)=F(x)﹣F(﹣x)=ex﹣e﹣x+2sinx﹣2ax,
則'(x)=ex﹣e﹣x+2cosx﹣2a,S(x)='(x)=ex﹣e﹣x﹣2sinx,
因?yàn)镾'(x)=ex+e﹣x﹣2cosx≥0當(dāng)x≥0時(shí)恒成立,所以函數(shù)S(x)在[0,+∞)上單調(diào)遞增,∴S(x)≥S(0)=0當(dāng)x∈[0,+∞)時(shí)恒成立;
故函數(shù)'(x)在[0,+∞)上單調(diào)遞增,所以'(x)≥'(0)=4﹣2a在x∈[0,+∞)時(shí)恒成立.
當(dāng)a≤2時(shí),'(x)≥0,(x)在[0,+∞)單調(diào)遞增,即(x)≥(0)=0.
故a≤2時(shí)F(x)≥F(﹣x)恒成立.
當(dāng)a>2時(shí),因?yàn)?/span>'(x)在[0,+∞)單調(diào)遞增,
所以總存在x0∈(0,+∞),使(x)在區(qū)間[0,x0)上'(x)<0,即(x)在區(qū)間[0,x0)上單調(diào)遞減,而(0)=0,
所以當(dāng)x∈[0,x0)時(shí),(x)<0,這與F(x)﹣F(﹣x)≥0對x∈[0,+∞)恒成立矛盾,
所以a>2不符合題意,故符合條件的a的取值范圍是(﹣∞,2].
【解析】(1)根據(jù)題意可知f(t)=g(t),令h(x)=ex+sinx﹣x(x≥0),求出其導(dǎo)函數(shù),進(jìn)而求得h(x)的最小值即為P、Q兩點(diǎn)間的最短距離.(2)令(x)=F(x)﹣F(﹣x)=ex﹣e﹣x+2sinx﹣2ax,函數(shù)y=F(x)的圖象恒在y=F(﹣x)的圖象上方,等價(jià)于(x)≥0恒成立,求出其導(dǎo)函數(shù),可求出φ(x)的單調(diào)性,進(jìn)而可求得a的取值范圍.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識,掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減,以及對函數(shù)的最大(小)值與導(dǎo)數(shù)的理解,了解求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)著作《孫子算經(jīng)》中有這樣一道算術(shù)題:“今有物不知其數(shù),三三數(shù)之余二,五五數(shù)之余三,問物幾何?”人們把此類題目稱為“中國剩余定理”,若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為N=n(modm),例如11=2(mod3).現(xiàn)將該問題以程序框圖的算法給出,執(zhí)行該程序框圖,則輸出的n等于( )
A.21
B.22
C.23
D.24
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線x+y﹣2=0在矩陣A= 對應(yīng)的變換作用下得到的直線仍為x+y﹣2=0,求矩陣A的逆矩陣A﹣1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)).在極坐標(biāo)系(與平面直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸)中,直線l的方程為 .
(1)求曲線C的普通方程及直線l的直角坐標(biāo)方程;
(2)設(shè)P是曲線C上的任意一點(diǎn),求點(diǎn)P到直線l的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=4x的焦點(diǎn)F,過焦點(diǎn)的直線與拋物線交于A,B兩點(diǎn),則4|FA|+|FB|的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面內(nèi),定點(diǎn)A,B,C,O滿足 |=2, = ,動點(diǎn)P,M滿足 的最大值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A與點(diǎn)A′在x軸上,且關(guān)于y軸對稱,過點(diǎn)A′垂直于x軸的直線與拋物線y2=2x交于兩點(diǎn)B,C,點(diǎn)D為線段AB 上的動點(diǎn),點(diǎn)E在線段AC上,滿足 .
(1)求證:直線DE與此拋物線有且只有一個(gè)公共點(diǎn);
(2)設(shè)直線DE與此拋物線的公共點(diǎn)F,記△BCF與△ADE的面積分別為S1、S2 , 求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x+a)lnx在x=1處的切線方程為y=x﹣1.
(Ⅰ)求a的值及f(x)的單調(diào)區(qū)間;
(Ⅱ)記函數(shù)y=F(x)的圖象為曲線C,設(shè)點(diǎn)A(x1 , y1),B(x2 , y2)是曲線C上不同的兩點(diǎn),如果在曲線C上存在點(diǎn)M(x0 , y0),使得①x0= ;②曲線C在點(diǎn)M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.試證明:函數(shù)f(x)不存在“中值相依切線”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1= ,an+1=10an+1.
(1)證明數(shù)列{an+ }是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足bn=lg(an+ ),Tn為數(shù)列{ }的前n項(xiàng)和,求證:Tn< .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com