如圖,在正三棱柱ABC-A1B1C1中,D為棱AA1的中點(diǎn).若AA1=4,AB=2,則三棱錐A1-BC1D的體積為
 
考點(diǎn):棱柱、棱錐、棱臺(tái)的體積
專(zhuān)題:空間位置關(guān)系與距離
分析:VA1-BC1D=VC1-A1BD,利用等積法能求出三棱錐A1-BC1D的體積.
解答: 解:∵在正三棱柱ABC-A1B1C1中,
D為棱AA1的中點(diǎn).AA1=4,AB=2,
∴C1到平面BDA1距離h是邊長(zhǎng)為2的等邊△A1B1C1的高,
∴h=
22-1 
=
3
,
S△A1BD=
1
2
S△A1AB
=
1
2
×
1
2
×4×2
=2,
VA1-BC1D=VC1-A1BD
=
1
3
×SA1AB×h

=
1
3
×2×
3

=
2
3
3

故答案為:
2
3
3
點(diǎn)評(píng):本題考查三棱錐的體積的求法,解題時(shí)要認(rèn)真審題,注意等積法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直三棱柱ABC-A1B1C1的直觀圖(圖1)及三視圖(圖2)如圖所示,D為AC的中點(diǎn)
(1)求證:AB1∥平面BDC1
(2)求證:BD⊥AC1
(3)求直三棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1與側(cè)面BCC1B1的距離為2,側(cè)面BCC1B1的面積為4,此三棱柱ABC-A1B1C1的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,一矩形鐵皮的長(zhǎng)為8cm,寬為5cm,在四個(gè)角上截去四個(gè)相同的小正方形,制成一個(gè)無(wú)蓋的小盒子,則小正方形的邊長(zhǎng)為
 
時(shí),盒子容積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,將一個(gè)各面都涂了油漆的正方體,切割成125個(gè)同樣大小的小正方體.經(jīng)過(guò)攪拌后,從中隨機(jī)取出一個(gè)小正方體,則它涂了油漆的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知ex>xm對(duì)任意x∈(1,+∞)恒成立,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二進(jìn)制數(shù)定義為“逢二進(jìn)一”,如(1101)2表示二進(jìn)制數(shù),將它轉(zhuǎn)換成十進(jìn)制形式,是1×23+1×22+0×21+1×20=13,即(1101)2轉(zhuǎn)換成十進(jìn)制數(shù)是13,那么類(lèi)似可定義k進(jìn)制數(shù)為“逢k進(jìn)一”,則8進(jìn)制數(shù)(102)8轉(zhuǎn)換成十進(jìn)制數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα+
9
tanα
=6,則
sinα+2cosα
2sinα-cosα
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+(b-2)x+c(2a-3≤x≤1)是偶函數(shù),則a+b=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案