17.一幾何體的三視圖如圖所示,若將該幾何體切割成長方體,則長方體的最大體積與該幾何體的體積之比為( 。
A.$\frac{2}{3}$B.$\frac{36}{41}$C.$\frac{18}{23}$D.$\frac{9}{11}$

分析 該幾何體的直觀圖為圖中的長方體ABCD-EFGH 截去三棱錐CBDK所得,利用體積計算公式即可得出.

解答 解:該幾何體的直觀圖為圖中的長方體ABCD-EFGH 截去三棱錐CBDK所得
其體積為2×2×4-$\frac{1}{3}×\frac{1}{2}×2×2×1$=$\frac{46}{3}$,
該幾何體截去的一部分得到的條件最大的長方體MNKJ-EFGH,
其體積為2×2×3=12,
故所得體積之比為$\frac{18}{23}$.
故選:C.

點評 本題考查了三視圖的有關計算、長方體的同角計算公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,在直三棱柱ABC-A1B1C1中,AC=AA1=4,AB=3,AB⊥AC.
(Ⅰ)求證:A1C⊥平面ABC1;
(Ⅱ)求二面角A-BC1-A1的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖①,在△ABC中,已知AB=15,BC=14,CA=13.將△ABC沿BC邊上的高AD折成一個如圖②所示的四面體A-BCD,使得圖②中的BC=11.
(1)求二面角B-AD-C的平面角的余弦值;
(2)在四面體A-BCD的棱AD上是否存在點P,使得$\overrightarrow{PB}$•$\overrightarrow{PC}$=0?若存在,請指出點P的位置;若不存在,請給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集為[-1,1].
(Ⅰ)求m的值;
(Ⅱ)設a,b,c為正數(shù),且a+b+4c=m,求$\sqrt{a}$+$\sqrt$+$\sqrt{2c}$的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.祖暅原理:“冪勢既同,則積不容異”.“冪”是截面積,“勢”是幾何體的高,意思是兩個同高的幾何體,如在等高處截面的面積恒相等,體積相等.已知某不規(guī)則幾何體與如圖所示的幾何體滿足“冪勢同”,則該不規(guī)則幾何體的體積為( 。
A.4-$\frac{π}{2}$B.8-$\frac{4π}{3}$C.8-πD.8-2π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.設點M在圓C:(x-4)2+(y-4)2=8上運動,點A(6,-1),O為原點,則MO+2MA的最小值為10-2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.一個幾何體的三視圖如圖所示(單位cm),則該幾何體的體積為6$\sqrt{3}$+$\frac{2π}{3}$cm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線和虛線畫出的是多面體的三視圖,則該多面體的體積為( 。
A.$\frac{64}{3}$B.$\frac{32}{3}$C.$\frac{64}{3}$或32D.$\frac{32}{3}$或$\frac{64}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.函數(shù)y=x3和y=log2x在同一坐標系內(nèi)的大致圖象是(  )
A.B.
C.D.

查看答案和解析>>

同步練習冊答案