【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量
(單位:
)和年利潤
(單位:千元)的影響,對近13年的宣傳費
和年銷售量
數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
由散點圖知,按建立
關(guān)于
的回歸方程是合理的.令
,則
,經(jīng)計算得如下數(shù)據(jù):
| |||||
10.15 | 109.94 | 0.16 | -2.10 | 0.21 | 21.22 |
(1)根據(jù)以上信息,建立關(guān)于
的回歸方程;
(2)已知這種產(chǎn)品的年利潤與
的關(guān)系為
.根據(jù)(1)的結(jié)果,求當(dāng)年宣傳費
時,年利潤的預(yù)報值是多少?
附:對于一組數(shù)據(jù),其回歸直線
的斜率和截距的最小二乘估計分別為
,
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線在點
處的切線方程;
(Ⅱ)求證:“”是“函數(shù)
有且只有一個零點” 的充分必要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列為單調(diào)遞增數(shù)列,
為其前
項和,
.
(1)求的通項公式;
(2)若,
為數(shù)列
的前
項和,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)
的極值;
(2)若存在與函數(shù)的圖象都相切的直線,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,考慮下列命題:①圓
上的點到
的距離的最小值為
;②圓
上存在點
到點
的距離與到直線
的距離相等;③已知點
,在圓
上存在一點
,使得以
為直徑的圓與直線
相切,其中真命題的個數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018甘肅蘭州市高三一診】已知圓:
,過
且與圓
相切的動圓圓心為
.
(I)求點的軌跡
的方程;
(II)設(shè)過點的直線
交曲線
于
,
兩點,過點
的直線
交曲線
于
,
兩點,且
,垂足為
(
,
,
,
為不同的四個點).
①設(shè),證明:
;
②求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在北上廣深等十余大中城市,一款叫“一度用車”的共享汽車給市民們提供了一種新型的出行方式.2020年,懷化也將出現(xiàn)共享汽車,用戶每次租車時按行駛里程(1元/公里)加用車時間(0.1元/分鐘)收費,李先生家離上班地點10公里,每天租用共享汽車上下班,由于堵車因素,每次路上開車花費的時間是一個隨機(jī)變量,根據(jù)一段時間統(tǒng)計40次路上開車花費時間在各時間段內(nèi)的情況如下:
時間(分鐘) | |||||
次數(shù) | 8 | 14 | 8 | 8 | 2 |
以各時間段發(fā)生的頻率視為概率,假設(shè)每次路上開車花費的時間視為用車時間,范圍為分鐘.
(Ⅰ)若李先生上、下班時租用一次共享汽車路上開車不超過45分鐘,便是所有可選擇的交通工具中的一次最優(yōu)選擇,設(shè)是4次使用共享汽車中最優(yōu)選擇的次數(shù),求
的分布列和期望;
(Ⅱ)若李先生每天上下班使用共享汽車2次,一個月(以20天計算)平均用車費用大約是多少(同一時段,用該區(qū)間的中點值作代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
在平面直角坐標(biāo)系中,曲線
的參數(shù)方程是
(
為參數(shù),
),在以坐標(biāo)原點為極點,
軸的正半軸為極軸的極坐標(biāo)系中,曲線
的極坐標(biāo)方程是
,等邊
的頂點都在
上,且點
,
,
依逆時針次序排列,點
的極坐標(biāo)為
.
(1)求點,
,
的直角坐標(biāo);
(2)設(shè)為
上任意一點,求點
到直線
距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:
(
)的焦點是橢圓
:
(
)的右焦點,且兩曲線有公共點
(1)求橢圓的方程;
(2)為坐標(biāo)原點,
,
,
是橢圓
上不同的三點,并且
為
的重心,試探究
的面積是否為定值.若是,求出這個定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com