分析 先將兩個函數(shù)抽象為指數(shù)函數(shù):y=ax,則(1)轉(zhuǎn)化為關(guān)于x的方程:3x-1=1-2x求解;
(2)0<a<1,y=ax是減函數(shù),有3x-1<1-2x求解,當(dāng)a>1時,y=ax是增函數(shù),有3x-1>1-2x求解,然后兩種情況取并集.
解答 解:(1)∵y1=y2 ,∴3x-1=1-2x,
解之得:x=$\frac{2}{5}$;
(2)若a>1,則指數(shù)函數(shù)為增函數(shù).
又因為y1>y2,所以有3x-1>1-2x,解得x>$\frac{2}{5}$;
若0<a<1,指數(shù)函數(shù)為減函數(shù).
因為y1>y2,所以有3x-1<1-2x,解得x<$\frac{2}{5}$;
綜上:當(dāng)a>1時,x>$\frac{2}{5}$;當(dāng)0<a<1時,x<$\frac{2}{5}$.
點評 本題主要考查指數(shù)不等式的解法,這類問題要轉(zhuǎn)化為指數(shù)函數(shù)的單調(diào)性來解.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16π | B. | 12π | C. | 8π | D. | 4π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com