分析 將不等式變形為[(a+1)x-b]•[(a-1)x+b]<0的解集中的整數(shù)恰有4個(gè),再由0<b<1+a 可得,a>1,不等式的解集為$\frac{-b}{a-1}$<x<$\frac{a+1}$<1,考查解集端點(diǎn)的范圍,解出a的取值范圍.
解答 解:關(guān)于x 的不等式(x-b)2>(ax)2 即 (a2-1)x2+2bx-b2<0,
∵0<b<1+a,
[(a+1)x-b]•[(a-1)x+b]<0 的解集中的整數(shù)恰有4個(gè),∴a>1,
∴不等式的解集為$\frac{-b}{a-1}$<x<$\frac{a+1}$<1,所以解集里的整數(shù)是-3,-2,-1,0 三個(gè)
∴-4≤$\frac{-b}{a-1}$<-3,
∴2a-2<b≤4a-4,
∵b<1+a,
∴2a-2<1+a,
∴a<3,
綜上,1<a<3,
故答案為1<a<3.
點(diǎn)評(píng) 本題考查一元二次不等式的應(yīng)用,注意二次項(xiàng)系數(shù)的符號(hào),解區(qū)間的端點(diǎn)就是對(duì)應(yīng)一元二次方程的根.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{14}$ | B. | $\sqrt{13}$ | C. | 2$\sqrt{3}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {1,5,7} | B. | {3,5,7} | C. | {3,9} | D. | {1,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①③ | B. | ②④ | C. | ①②③ | D. | ①③④ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com