取一根長度為3 m的繩子,拉直后在任意位置剪斷,那么剪得兩段的長都不小于1 m的概率有多大?

分析:在任意位置剪斷繩子,則剪斷位置到一端點的距離取遍[0,3]內(nèi)的任意數(shù),并且每一個實數(shù)被取到都是等可能的.因此在任意位置剪斷繩子的所有結(jié)果(基本事件)對應(yīng)[0,3]上的均勻隨機數(shù),其中取得的[1,2]內(nèi)的隨機數(shù)就表示剪斷位置與端點距離在[1,2]內(nèi),也就是剪得兩段長都不小于1 m.這樣取得的[1,2]內(nèi)的隨機數(shù)個數(shù)與[0,3]內(nèi)的個數(shù)之比就是事件A發(fā)生的概率.

解法一:(1)利用計算器或計算機產(chǎn)生一組0到1區(qū)間的均勻隨機數(shù)a1=RAND.

(2)經(jīng)過伸縮變換,a=a1×3.

(3)統(tǒng)計出[1,2]內(nèi)隨機數(shù)的個數(shù)N1和[0,3]內(nèi)隨機數(shù)的個數(shù)N.

(4)計算頻率fn(A)=即為概率P(A)的近似值.

解法二:做一個帶有指針的圓盤,把圓周三等分,標(biāo)上刻度[0,3](這里3和0重合).轉(zhuǎn)動圓盤記下指針在[1,2](表示剪斷繩子位置在[1,2]范圍內(nèi))的次數(shù)N1及試驗總次數(shù)N,則fn(A)即為概率P(A)的近似值.

點評:用隨機數(shù)模擬的關(guān)鍵是把實際問題中事件A及基本事件總體對應(yīng)的區(qū)域轉(zhuǎn)化為隨機數(shù)的范圍.解法2用轉(zhuǎn)盤產(chǎn)生隨機數(shù),這種方法可以親自動手操作,但費時費力,試驗次數(shù)不可能很大;解法1用計算機產(chǎn)生隨機數(shù),可以產(chǎn)生大量的隨機數(shù),又可以自動統(tǒng)計試驗的結(jié)果,同時可以在短時間內(nèi)多次重復(fù)試驗,可以對試驗結(jié)果的隨機性和規(guī)律性有更深刻的認識.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

取一根長度為3 m的繩子,拉直后在任意位置剪斷,那么剪得兩段的長都不小于1 m的概率是多大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆廣東省高二第二學(xué)期期中考試數(shù)學(xué)理試卷(解析版) 題型:填空題

取一根長度為3 m的繩子,拉直后在任意位置剪斷,那么剪得兩段的長都不小于1 m的概率是              。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年蘇教版高中數(shù)學(xué)必修3 3.3幾何概型練習(xí)卷(二)(解析版) 題型:選擇題

取一根長度為3 m的繩子,拉直后在任意位置剪斷,那么剪得兩段的長都不小于1 m的概率是.

A.           B.           C.           D.不確定

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:陜西省2009-2010學(xué)年度高二第二學(xué)期期末考試數(shù)學(xué)試題(理科) 題型:選擇題

取一根長度為3 m的繩子,拉直后在任意位置剪斷,那么剪得兩段的長都不小于1 m的概率是(    )

A.           B.               C.             D.不確定

 

查看答案和解析>>

同步練習(xí)冊答案