3.設函數(shù)f(x)=|x-1|+|x-a|,x∈R.
(1)求證:當a=-2時,不等式lnf(x)>1成立;
(2)關于x的不等式f(x)≥a在R上恒成立,求實數(shù)a最大值.

分析 (1)利用絕對值三角不等式求得當a=-2時,f(x)>e,從而證得結論.
(2)利用絕對值三角不等式求得f(x)≥|a-1|,可得|a-1|≥a,由此解絕對值不等式求得實數(shù)a最大值.

解答 (1)證明:由函數(shù)f(x)=|x-1|+|x+2|≥|(x-1)-(x+2)|=3,
得函數(shù)f(x)的最小值為3,從而f(x)≥3>e,∴l(xiāng)nf(x)>1成立.
(2)解:由絕對值的性質得函數(shù)f(x)=|x-1|+|x-a|≥|(x-1)-(x-a)|=|a-1|,
從而|a-1|≥a,∴a-1≥a,或 a-1≤-a,解得a≤$\frac{1}{2}$,因此a的最大值為$\frac{1}{2}$.

點評 本題主要考查絕對值三角不等式,絕對值不等式的解法,體現(xiàn)了轉化、分類討論的數(shù)學思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.設函數(shù)f(x)=alnx+$\frac{1}{2}$x2+(1-b)x.
(Ⅰ)若曲線y=f(x)在點(1,f(1))處的切線方程為8x-2y-3=0,求a,b的值;
(Ⅱ)若b=a+1,x1,x2是f(x)的兩個極值點,證明:f(x1)+f(x2)<8ln2-12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸,建立極坐標系.已知曲線C1:(x-3)2+(y-2)2=1,曲線C2:$\left\{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù)),曲線C3:ρ(cosθ-2sinθ)=7.
(1)以t為參數(shù)將C1的方程寫成含t的參數(shù)方程,化C2的方程為普通方程,化C3的方程為直角坐標方程;
(2)若Q為C2上的動點,求點Q到曲線C3的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=|ax+1|,a∈R.
(Ⅰ)若?x∈R,f(x)+f(x-2)≥1恒成立,求實數(shù)a的取值范圍;
(Ⅱ)若f($\frac{a-1}{a}$)+f($\frac{b-1}{a}$)+f($\frac{c-1}{a}$)=4,求f($\frac{{{a^2}-1}}{a}$)+f($\frac{{{b^2}-1}}{a}$)+f($\frac{{{c^2}-1}}{a}$)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)f(x)=x3+bx2+cx+d的圖象如圖,則函數(shù)y=lnf′(x)的單調減區(qū)間為(  )
A.[0,3)B.[-2,3]C.(-∞,-2)D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在極坐標系中,圓C的方程為ρ=2acosθ(a≠0),以極點為坐標原點,極軸為x軸正半軸建立平面直角坐標系,設直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=3t+1}\\{y=4t+3}\end{array}\right.$(t為參數(shù)).
(1)求圓C的直角坐標方程(化為標準方程)和直線l的極坐標方程;
(2)若直線l與圓C只有一個公共點,且a<1,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=ax4•lnx+bx4-c在x=1處取得極值-3-c.
(1)試求實數(shù)a,b的值;
(2)試求函數(shù)f(x)的單調區(qū)間;
(3)若對任意x>0,不等式f(x)≥-2c2恒成立,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.設函數(shù)f(x)=x3-3ax+b(a>0).
(Ⅰ)若曲線y=f(x)在點(2,f(2))處與直線y=8相切,求a,b的值;
(Ⅱ)求函數(shù)f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.設函數(shù)f(x)=ex-e2x,則f(x)的最小值為-e2

查看答案和解析>>

同步練習冊答案