13.如圖,等邊△ABC的中線AF與中位線DE相交于G,已知△A′ED是△AED繞DE旋轉(zhuǎn)過程中的一個(gè)圖形,下列命題中,錯(cuò)誤的是( 。
A.動(dòng)點(diǎn)A′在平面ABC上的射影在線段AF上
B.恒有平面A′GF⊥平面BCED
C.三棱錐A′-EFD的體積有最大值
D.異面直線A′E與BD不可能垂直

分析 由斜線的射影定理可判斷A正確;由面面垂直的判定定理,可判斷B正確;由三棱錐的體積公式,可判斷C正確;由異面直線所成的角的概念可判斷D不正確

解答 解:∵A′D=A′E,△ABC是正三角形,
∴A′在平面ABC上的射影在線段AF上,故A正確;
由A知,平面A′GF一定過平面BCED的垂線,
∴恒有平面A′GF⊥平面BCED,故B正確;
三棱錐A′-FED的底面積是定值,體積由高即A′到底面的距離決定,
當(dāng)平面A′DE⊥平面BCED時(shí),三棱錐A′-FED的體積有最大值,故C正確;
當(dāng)(A′E)2+EF2=(A′F)2時(shí),面直線A′E與BD垂直,故④錯(cuò)誤.
故選:D.

點(diǎn)評(píng) 本題考查了線面、面面垂直的判定定理、性質(zhì)定理的運(yùn)用,考查了空間線線、線面的位置關(guān)系及所成的角的概念,考查了空間想象能力

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若a-i與2+bi互為共軛復(fù)數(shù),那么a+b等于( 。
A.3B.1C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在射線y=2x(x≥0)上,且$|z|=\sqrt{5}$,則復(fù)數(shù)z的虛部為( 。
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知直線l1:(m+2)x-y+5=0與l2:(m+3)x+(18+m)y+2=0垂直,則實(shí)數(shù)m的值為( 。
A.2或4B.1或4C.1或2D.-6或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ax+xlnx的圖象在點(diǎn)A(e,f(e))處的切線斜率為3
(1)求a的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)若不等式f(x)-kx+k>0對(duì)任意x∈(1,+∞)恒成立,求k的最大整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為e=$\frac{1}{2}$,過C1的左焦點(diǎn)F1的直線l:x-y+2=0,直線l被圓C2:(x-3)2+(y-3)2=r2(r>0)截得的弦長(zhǎng)為2$\sqrt{2}$.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)設(shè)C1的右焦點(diǎn)為F2,在圓C2上是否存在點(diǎn)P,滿足|PF1|=$\frac{a}$|PF2|,若存在,指出有幾個(gè)這樣的點(diǎn)(不必求出點(diǎn)的坐標(biāo));若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F2作一條直線(不與x軸垂直)與橢圓交于A,B兩點(diǎn),如果△ABF1恰好為等腰直角三角形,該直線的斜率為( 。
A.±1B.±2C.$±\sqrt{2}$D.$±\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.北宋數(shù)學(xué)家沈括的主要數(shù)學(xué)成就之一為隙積術(shù),所謂隙積,即“積之有隙”者,如累棋、層壇之類,這種長(zhǎng)方臺(tái)形狀的物體垛積.設(shè)隙積共n層,上底由長(zhǎng)為a個(gè)物體,寬為b個(gè)物體組成,以下各層的長(zhǎng)、寬依次各增加一個(gè)物體,最下層成為長(zhǎng)為c個(gè)物體,寬為d個(gè)物體組成,沈括給出求隙積中物體總數(shù)的公式為S=$\frac{n}{6}[{({2b+d})a+({b+2d})c}]+\frac{n}{6}({c-a})$.已知由若干個(gè)相同小球粘黏組成的幾何體垛積的三視圖如圖所示,則該垛積中所有小球的個(gè)數(shù)為85.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.$若f(n)=tan\frac{nπ}{3},(n∈{N^*}),則f(1)+f(2)+…+f(100)$=( 。
A.$-\sqrt{3}$B.$-2\sqrt{3}$C.0D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案