分析 (1)構(gòu)造函數(shù),求導(dǎo)數(shù),利用函數(shù)的單調(diào)性,即可證明結(jié)論;
(2)不妨設(shè)x1<x2,$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<f′($\frac{{x}_{1}+{x}_{2}}{2}$)?$\frac{{x}_{2}ln{x}_{2}-{x}_{1}ln{x}_{1}}{{x}_{2}-{x}_{1}}$<ln$\frac{{x}_{1}+{x}_{2}}{2}$+1,即x2lnx2-x1lnx1<x2ln$\frac{{x}_{1}+{x}_{2}}{2}$-x1ln$\frac{{x}_{1}+{x}_{2}}{2}$+x2-x1,兩邊同除以x1得$\frac{{x}_{2}}{{x}_{1}}$ln$\frac{2•\frac{{x}_{2}}{{x}_{1}}}{1+\frac{{x}_{2}}{{x}_{1}}}$<ln$\frac{2}{1+\frac{{x}_{2}}{{x}_{1}}}$+$\frac{{x}_{2}}{{x}_{1}}$-1,令$\frac{{x}_{2}}{{x}_{1}}$=t,則t>1,即證:tln$\frac{2t}{1+t}$<ln$\frac{2}{1+t}$+t-1,令g(t)=$\frac{2t}{1+t}$-ln$\frac{2}{1+t}$-t+1,利用導(dǎo)數(shù)證明g(t)<0即可.
解答 證明:(1)(1)當(dāng)x∈[-1,0]時,求證:$\frac{1+x}{1-x}$≤e2x≤$\frac{1}{(1-x)^{2}}$;
構(gòu)造函數(shù)g(x)=$\frac{1+x}{1-x}$-e2x,則g′(x)=$\frac{2}{(1-x)^{2}}$-2e2x,∵x∈[-1,0],∴g′(x)≥0,
∴g(x)在區(qū)間[-1,0]上單調(diào)遞增,∴g(x)≤g(0)=0,∴$\frac{1+x}{1-x}$≤e2x;
構(gòu)造函數(shù)h(x)=e2x-$\frac{1}{(1-x)^{2}}$,則h′(x)=2e2x+$\frac{2}{(1-x)^{3}}$>0,
∴h(x)在區(qū)間[-1,0]上單調(diào)遞增,∴h(x)≤h(0)=0,∴e2x≤$\frac{1}{(1-x)^{2}}$;
∴$\frac{1+x}{1-x}$≤e2x≤$\frac{1}{(1-x)^{2}}$;
(2)不妨設(shè)x1<x2,
$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<f′($\frac{{x}_{1}+{x}_{2}}{2}$)?$\frac{{x}_{2}ln{x}_{2}-{x}_{1}ln{x}_{1}}{{x}_{2}-{x}_{1}}$<ln$\frac{{x}_{1}+{x}_{2}}{2}$+1,
即x2lnx2-x1lnx1<x2ln$\frac{{x}_{1}+{x}_{2}}{2}$-x1ln$\frac{{x}_{1}+{x}_{2}}{2}$+x2-x1,
∴x2ln$\frac{2{x}_{2}}{{x}_{1}+{x}_{2}}$<x1ln$\frac{2{x}_{1}}{{x}_{1}+{x}_{2}}$+x2-x1,
兩邊同除以x1得$\frac{{x}_{2}}{{x}_{1}}$ln$\frac{2•\frac{{x}_{2}}{{x}_{1}}}{1+\frac{{x}_{2}}{{x}_{1}}}$<ln$\frac{2}{1+\frac{{x}_{2}}{{x}_{1}}}$+$\frac{{x}_{2}}{{x}_{1}}$-1,
令$\frac{{x}_{2}}{{x}_{1}}$=t,則t>1,即證:tln$\frac{2t}{1+t}$<ln$\frac{2}{1+t}$+t-1,
令g(t)=$\frac{2t}{1+t}$-ln$\frac{2}{1+t}$-t+1,
g′(t)=ln(1+$\frac{t-1}{t+1}$)-$\frac{t-1}{t+1}$,
令$\frac{t-1}{t+1}$=x(x>0),h(x)=ln(1+x)-x,
h′(x)=$\frac{-x}{1+x}$<0,h(x)在(0,+∞)上單調(diào)遞減,
∴h(x)<h(0)=0,即ln(1+x)<x,即g′(t)=ln(1+$\frac{t-1}{t+1}$)-$\frac{t-1}{t+1}$<0恒成立,
∴g(t)在(1,+∞)上是減函數(shù),所以g(t)<g(1)=0,
∴tln$\frac{2t}{1+t}$<ln$\frac{2}{1+t}$+t-1得證,
∴$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<f′($\frac{{x}_{1}+{x}_{2}}{2}$)成立.
點(diǎn)評 該題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查不等式的證明,考查學(xué)生的運(yùn)算推理能力和轉(zhuǎn)化問題的能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(b)>$\frac{1-2ln2}{4}$ | B. | f(b)<$\frac{1-2ln2}{4}$ | C. | f(b)>$\frac{3+2ln2}{8}$ | D. | f(b)<$\frac{4+3ln2}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,$\frac{π}{4}$] | B. | [$\frac{π}{4}$,$\frac{5π}{12}$] | C. | [$\frac{π}{12}$,$\frac{5π}{12}$] | D. | [$\frac{π}{6}$,$\frac{π}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 9 | C. | 8 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -9M | B. | 9M | C. | 27M | D. | -27M |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com