6.已知函數(shù)f(x)=|x2-4x+3|,若關(guān)于x的方程f(x)-a=x至少有三個不相等的實數(shù)根,則實數(shù)a的取值范圍是[-1,-$\frac{3}{4}$].

分析 若關(guān)于x的方程f(x)-a=x至少有三個不相等的實數(shù)根,則函數(shù)g(x)=f(x)-x的圖象與直線y=a至少有三個交點,數(shù)形結(jié)合,可得答案.

解答 解:令g(x)=f(x)-x=|x2-4x+3|-x=$\left\{\begin{array}{l}{{x}^{2}-5x+3,x<1,或x>3}\\{-{x}^{2}+3x-3,1≤x≤3}\end{array}\right.$,
其圖象如下圖所示:

當x=1時,函數(shù)取極小值-1,當x=$\frac{3}{2}$時,函數(shù)取極大值-$\frac{3}{4}$,當x=3時,函數(shù)取極小值-3,
若關(guān)于x的方程f(x)-a=x至少有三個不相等的實數(shù)根,
則函數(shù)g(x)的圖象與直線y=a至少有三個交點,
故a∈[-1,-$\frac{3}{4}$],
故答案為:[-1,-$\frac{3}{4}$]

點評 本題考查的知識點是分段函數(shù)的應用,函數(shù)的圖象,函數(shù)零點與方程根的關(guān)系,數(shù)形結(jié)合思想,難度中檔.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知首項為1的正項數(shù)列{an}滿足:an+12+an2<$\frac{5}{2}$an+1an,n∈N*
(1)若a2=$\frac{3}{2}$,a3=x,a4=4,求x的取值范圍;
(2)設數(shù)列{an}是公比為q的等比數(shù)列,Sn為數(shù)列{an}的前n項和.若$\frac{1}{2}$Sn<Sn+1<2Sn,n∈N*,求q的取值范圍.
(3)若a1,a2,…,ak(k≥3)成等差數(shù)列,且1+a2+…+ak=120,求正整數(shù)k的最小值.以及k取最小值對相應數(shù)列a1,a2,…,ak的公差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.以正四面體各面中心為頂點的新四面體的棱長是原四面體棱長的( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在平行四邊形ABCD中,AC與DB交于點O,設$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$.
(Ⅰ)試用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{AC}$和$\overrightarrow{BD}$;
(Ⅱ)若E為DO的中點,$\overrightarrow{AE}$=$λ\overrightarrow{a}$+$μ\overrightarrow$,求λ+μ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.解方程:2(x4+1)-3x(x2-1)-4x2=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.證明不等式:
(1)當x∈[-1,0]時,求證:$\frac{1+x}{1-x}$≤e2x≤$\frac{1}{(1-x)^{2}}$;
(2)已知函數(shù)f(x)=xlnx,設A(x1,f(x1)),B(x2,f(x2)),且x1≠x2,證明:$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<f′($\frac{{x}_{1}+{x}_{2}}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.某校對高三年級的學生進行體檢,現(xiàn)將高三男生的體重(單位:kg)數(shù)據(jù)進行整理后分成六組,并繪制頻率分布直方圖(如圖).已知圖中從左到右第一、第六小組的頻率分別為0.16、0.07,第一、第二、第三小組的頻率成等比數(shù)列,第三、第四、第五、第六小組的頻率成等差數(shù)列,且第三小組的頻數(shù)為236,則該校高三年級的男生總數(shù)為( 。
A.800B.960C.944D.888

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(1-x)(x<0)}\\{g(x)+1(x>0)}\end{array}\right.$,若f(x)是奇函數(shù),則g(3)=-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.正四棱錐的底面積是24cm2,側(cè)面等腰三角形的面積為18cm2,四棱錐側(cè)棱的長度.

查看答案和解析>>

同步練習冊答案