10.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且3a3=a6+4,若S5<10,則a2的取值范圍是( 。
A.(-∞,2)B.(-∞,0)C.(1,+∞)D.(0,2)

分析 設(shè)公差為d,由3a3=a6+4,求出d=2a2-4,再由S5<10,能求出a2的取值范圍.

解答 解:設(shè)公差為d,由3a3=a6+4,
得3a2+3d=a2+4d+4,即d=2a2-4,
則由S5<10,
得$\frac{5({a}_{1}+{a}_{5})}{2}$=$\frac{5({a}_{2}+{a}_{4})}{2}$<10,
∴a2+a4<4,
∴a2+a2+2d<4,
∴2a2+2(2a2-4)<4,
∴6a2<12,
解得a2<2.
故選:A.

點(diǎn)評(píng) 本題考查等差數(shù)列第二項(xiàng)的范圍的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在圓x2+y2=9上任取一點(diǎn)P,過點(diǎn)P作y軸的垂線段PD,D為垂足,當(dāng)P為圓與y軸交點(diǎn)時(shí),P與D重合,動(dòng)點(diǎn)M滿足$\overrightarrow{DM}$=2$\overrightarrow{MP}$;
(1)求點(diǎn)M的軌跡C的方程;
(2)拋物線C′的頂點(diǎn)在坐標(biāo)原點(diǎn),并以曲線C在y軸正半軸上的頂點(diǎn)為焦點(diǎn),直線y=x+3與拋物線C′交于A、B兩點(diǎn),求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知焦點(diǎn)在y軸上的橢圓E的中心是原點(diǎn)O,離心率為雙曲線y2-$\frac{{x}^{2}}{2}$=1離心率的一半,直線y=x被橢圓E截得的線段長為$\frac{4\sqrt{10}}{5}$.直線l:y=kx+m與y軸交于點(diǎn)P,與橢圓E交于A,B兩個(gè)相異點(diǎn),且$\overrightarrow{AP}$=λ$\overrightarrow{PB}$.
(1)求橢圓E的方程;
(2)是否存在實(shí)數(shù)m,使$\overrightarrow{OA}$+λ$\overrightarrow{OB}$=4$\overrightarrow{OP}$?若存在,求m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.甲、乙兩艘輪船都要?客粋(gè)泊位,它們可能在一晝夜的任意時(shí)刻到達(dá).設(shè)甲、乙兩艘輪船?坎次坏臅r(shí)間分別是4小時(shí)和6小時(shí),求有一艘輪船?坎次粫r(shí)必須等待一段時(shí)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.△ABC中,角A、B、C的對(duì)邊分別為a、b、c,若A=2B,則$\frac{c}+\frac{2b}{a}$的取值范圍為(2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$\overrightarrow{a}$=(3,2),$\overrightarrow$=(6,y),若$\overrightarrow{a}$∥$\overrightarrow$,則y等于( 。
A.-9B.-4C.4D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.袋中裝有大小相同的3個(gè)白球和4個(gè)黑球,現(xiàn)從袋中任取3個(gè)球,設(shè)ξ為所取出的3個(gè)球中白球數(shù)與黑球數(shù)之差的絕對(duì)值.
(1)求ξ的分布列及數(shù)學(xué)期望;
(2)記“函數(shù)f(x)=x2-3ξx+1在區(qū)間[2,+∞)上單調(diào)遞增”為事件A,求事件A的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若實(shí)數(shù)x,y滿足不等式組$\left\{{\begin{array}{l}{y≤3}\\{3x+7y-24≤0}\\{x+4y-8≥0}\end{array}}\right.$,則z=|x|+|y|的最小值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)是定義在(-1,1)上的偶函數(shù),在(0,1)上是增函數(shù),若f(a-2)-f(4-a2)<0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案