【題目】在銳角三角形ABC中,a,b,c分別為角A,B,C所對的邊,且

(1)求角C的大。

(2)若 ,且三角形ABC的面積為,求的值.

【答案】(1);(2) 5.

【解析】試題分析:(1)利用正弦定理把已知條件轉(zhuǎn)化成角的正弦,整理可求得sinC,進而求得C.
(2)利用三角形面積求得ab的值,利用余弦定理求得a2+b2的值,最后求得a+b的值.

試題解析:

(1)由a=2csinA及正弦定理得, sinA=2sinCsinA.

∵sinA≠0,∴sinC ∵△ABC是銳角三角形,∴C

(2)∵C,△ABC面積為, absin,即ab=6.①

c,∴由余弦定理得a2b2-2abcos=7,即a2b2ab=7.②

由②變形得(ab)2=3ab+7.③ ③得(ab)2=25,故ab=5.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知分別為三個內(nèi)角的對邊,且

(1)求

(2)若邊上的中線,,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點,直線,設(shè)圓的半徑為1,圓心在上.

(1)若圓心也在直線上,過點作圓的切線,求切線的方程;

(2)若圓上存在點,使,求圓心的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國家實行二孩生育政策后,為研究家庭經(jīng)濟狀況對生二胎的影響,某機構(gòu)在本地區(qū)符合二孩生育政策的家庭中,隨機抽樣進行了調(diào)查,得到如下的列聯(lián)表:

經(jīng)濟狀況好

經(jīng)濟狀況一般

合計

愿意生二胎

50

不愿意生二胎

20

110

合計

210

1請完成上面的列聯(lián)表,并判斷能否在犯錯誤的概率不超過的前提下認為家庭經(jīng)濟狀況與生育二胎有關(guān)?

2若采用分層抽樣的方法從愿意生二胎的家庭中隨機抽取4個家庭,則經(jīng)濟狀況好和經(jīng)濟狀況一般的家庭分別應抽取多少個?

32的條件下,從中隨機抽取2個家庭,求2個家庭都是經(jīng)濟狀況好的概率.

附:

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(1)討論函數(shù)的單調(diào)區(qū)間;

(2)求證: ;

(3)求證:當時, , 恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E=1(ab>0),其左右焦點為F1,F2,過F2的直線l交橢圓E于A,B兩點,△AB F1的周長為8,且△AF1F2的面積最大時,△AF1F2為正三角形。

(1)求橢圓E的方程;

(2)若MN是橢圓E經(jīng)過 原點的弦,MN||AB,求證: 為定值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)圓上的點A(2,3)關(guān)于直線x+2y=0的對稱點仍在圓上,且直線xy+1=0被圓截得的弦長為2,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】集成電路E由3個不同的電子元件組成,現(xiàn)由于元件老化,3個電子元件能正常工作的概率分別降為,,且每個電子元件能否正常工作相互獨立。若3個電子元件中至少有2個正常工作,則E能正常工作,否則就需要維修,且維修集成電路E所需要費用為100元。

(Ⅰ)求集成電路E需要維修的概率;

(Ⅱ)若某電子設(shè)備共由2個集成電路E組成,設(shè)X為該電子設(shè)備需要維修集成電路所需費用。求X的分布列和均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線經(jīng)過點,且圓的圓心到的距離為.

(1)求直線被該圓所截得的弦長;

(2)求直線的方程.

查看答案和解析>>

同步練習冊答案