6.已知定義在(0,$\frac{π}{2}}$)上的函數(shù)f(x),f'(x)為其導(dǎo)數(shù),且$\frac{f(x)}{{{sin}x}}$<$\frac{f'(x)}{cosx}$恒成立,則( 。
A.$\sqrt{3}$f($\frac{π}{4}$)>$\sqrt{2}$f($\frac{π}{3}$)B.$\sqrt{2}$f($\frac{π}{6}$)>f($\frac{π}{4}$)C.f(1)<2f($\frac{π}{6}$)sin1D.$\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$)

分析 g(x)=$\frac{f(x)}{sinx}$,則g′(x)=$\frac{sinxf′(x)-cosxf(x)}{si{n}^{2}x}$>0恒成立,即g(x)=$\frac{f(x)}{sinx}$,x∈(0,$\frac{π}{2}}$)為增函數(shù),進(jìn)而得到答案.

解答 解:當(dāng)x∈(0,$\frac{π}{2}}$)時(shí),sinx>0,cosx>0,
∵$\frac{f(x)}{{{sin}x}}$<$\frac{f'(x)}{cosx}$恒成立,
∴sinxf′(x)-cosxf(x)>0恒成立,
令g(x)=$\frac{f(x)}{sinx}$,則g′(x)=$\frac{sinxf′(x)-cosxf(x)}{si{n}^{2}x}$>0恒成立,
即g(x)=$\frac{f(x)}{sinx}$,x∈(0,$\frac{π}{2}}$)為增函數(shù),
故g($\frac{π}{3}$)>g($\frac{π}{6}$),
即$\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$),
故D正確;
故選:D

點(diǎn)評 本題考查的知識點(diǎn)是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,構(gòu)造函數(shù)g(x)=$\frac{f(x)}{sinx}$,并分析其單調(diào)性,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=2sin(ωx+$\frac{π}{6}$)(ω>0)在($\frac{π}{2}$,π)上單調(diào)遞增,則ω的取值范圍是(  )
A.(0,$\frac{1}{3}$]B.[$\frac{1}{3}$,$\frac{2}{3}$]C.[$\frac{2}{3}$,$\frac{4}{3}$]D.($\frac{2}{3}$,$\frac{4}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,內(nèi)角A、B、C所對的邊分別為a、b、c,已知a=csinB+bcosC.
(1)求A+C的值;
(2)若b=$\sqrt{2}$,求△ABC面積的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.集合A={y|y=2x-1},B={x||2x-3|≤3},則A∩B=( 。
A.{x|0<x≤3}B.{x|1≤x≤3}C.{x|0≤x≤3}D.{x|1<x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-3≤0}\\{y≥1}\end{array}\right.$,若目標(biāo)函數(shù)z=mx+y(m>0)的最大值為5,則m的值為(  )
A.$\frac{1}{5}$B.$\frac{1}{2}$C.2D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知數(shù)列{an},{bn}滿足a1=1且an,an+1是函數(shù)f(x)=x2-bnx+2n的兩個(gè)零點(diǎn),則b9等于( 。
A.64B.48C.32D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知△ABC中,內(nèi)角A,B,C所對的邊分別為,b,c,且acosC+$\frac{{\sqrt{3}}}{2}$c=b,若a=1,$\sqrt{3}$c-2b=1,則角C為(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知復(fù)數(shù)z滿足i•z=1+2i(其中i為虛數(shù)單位),則|z|=( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=log0.5(5+4x-x2)的單調(diào)遞增區(qū)間是[2,5).

查看答案和解析>>

同步練習(xí)冊答案