【題目】甲船在島B的正南A處,AB=10千米.甲船以每小時4千米的速度向北航行,同時,乙船自B出發(fā)以每小時6千米的速度向北偏東60°的方向駛?cè)ィ敿状?/span>AB之間,且甲、乙兩船相距最近時,它們所航行的時間是(  )

A. 分鐘 B. 小時 C. 21.5分鐘 D. 2.15分鐘

【答案】A

【解析】試題分析:兩船軌跡及距離最近時兩船連線構(gòu)成一個以B島為頂點,角度是120度的三角形,

設(shè)距離最近時航行時間為th),此時距離skm),此時甲船到B島距離為(10-4tkm

乙船距離B6tkm).

cos120°==-0.5,

化簡得:s2=28t2-20t+100,拋物線開口朝上,

在對稱軸處s2有最小值,

s2取最小值時,t=-小時.故選A

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】為推行“新課堂”教學法,某化學老師分別用傳統(tǒng)教學和“新課堂”兩種不同的教學方式,在甲、乙兩個班級中進行教學實驗,為了比較教學效果,期中考試后,分別從兩個班級中各隨機抽取20名學生的成績進行統(tǒng)計,作出的莖葉圖如下圖,記成績不低于70分者為“成績優(yōu)良”.

(1)分別計算甲、乙兩班20個樣本中,化學分數(shù)前十的平均分,并大致判斷哪種教學方式的教學效果更佳;

(2)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為“成績優(yōu)良與教學方式有關(guān)”?

附:參考公式: ,其中

臨界值表:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】每年的4月23日為世界讀書日,為調(diào)查某高校學生(學生很多)的讀書情況,隨機抽取了男生,女生各20人組成的一個樣本,對他們的年閱讀量(單位:本)進行了統(tǒng)計,分析得到了男生年閱讀量的頻數(shù)分布表和女生年閱讀量的頻率分布直方圖.

男生年閱讀量的頻數(shù)分布表(年閱讀量均在區(qū)間內(nèi))

(Ⅰ)根據(jù)女生年閱讀量的頻率分布直方圖估計該校女生年閱讀量的中位數(shù);

(Ⅱ)若年不小于40本為閱讀豐富,否則為閱讀不豐富,依據(jù)上述樣本研究年閱讀量與性別的關(guān)系,完成下列列聯(lián)表,并判斷是否有99%的把握認為閱讀豐富與性別有關(guān);

(Ⅲ)在樣本中,從年閱讀量在的學生中,隨機抽取2人參加全市的征文比賽,記這2人中男生人數(shù)為,求的分布列和期望.

附: ,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,扇形AOB,圓心角AOB等于60°,半徑為2,在弧AB上有一動點P,過P引平行于OB的直線和OA交于點C,設(shè)∠AOPθ,當△POC面積的最大值時θ的值為___________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校高一年級學生某次身體素質(zhì)體能測試的原始成績采用百分制,已知所有這些學生的原始成績均分布在內(nèi),發(fā)布成績使用等級制各等級劃分標準見下表,規(guī)定: 、、三級為合格等級, 為不合格等級.

百分制

分及以上

分到

分到

分以下

等級





為了解該校高一年級學生身體素質(zhì)情況,從中抽取了名學生的原始成績作為樣本進行統(tǒng)計,按照的分組作出頻率分布直方圖如圖所示,樣本中分數(shù)在分及以上的所有數(shù)據(jù)的莖葉圖如圖所示.

1)求和頻率分布直方圖中的的值;

2)根據(jù)樣本估計總體的思想,以事件發(fā)生的頻率作為相應事件發(fā)生的概率,若在該校高一學生任選,求至少有人成績是合格等級的概率;

3)在選取的樣本中,兩個等級的學生中隨機抽取了名學生進行調(diào)研,表示所抽取的名學生中為等級的學生人數(shù),求隨機變量的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC中,已知=3.

(1)求證:tan B=3tan A

(2)若cos C,求A的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}是等差數(shù)列,Sn為{an}的前n項和,且a10=19,S10=100;數(shù)列{bn}對任意n∈N* , 總有b1b2b3…bn1bn=an+2成立.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)記cn=(﹣1)n ,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,一動圓與直線相切且與圓外切.

(1)求動圓圓心的軌跡的方程;

(2)若經(jīng)過定點的直線與曲線交于兩點, 是線段的中點,過軸的平行線與曲線相交于點,試問是否存在直線,使得,若存在,求出直線的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線的參數(shù)方程是是參數(shù)),以坐標原點為原點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)判斷直線與曲線的位置關(guān)系;

(2)過直線上的點作曲線的切線,求切線長的最小值.

查看答案和解析>>

同步練習冊答案