16.已知函數(shù)y=f(x)的定義在實數(shù)集R上的奇函數(shù),且當(dāng)x∈(-∞,0)時,xf'(x)<f(-x)(其中f'(x)是f(x)的導(dǎo)函數(shù)),若a=$\sqrt{3}$f($\sqrt{3})$,b=(lg3)f(lg3),c=$({log_3}\frac{1}{3})f({log_3}\frac{1}{3})$,則( 。
A.c>a>bB.c>b>aC.a>b>cD.a>c>b

分析 設(shè)F(x)=xf(x),根據(jù)題意得F(x)是偶函數(shù)且在區(qū)間(0,+∞)上是增函數(shù),由此比較$\sqrt{3}$、lg3和1的大小,結(jié)合函數(shù)的性質(zhì),不難得到本題的答案.

解答 解:設(shè)F(x)=xf(x),得F'(x)=x'f(x)+xf'(x)=xf'(x)+f(x),
∵當(dāng)x∈(-∞,0)時,xf′(x)<f(-x),且f(-x)=-f(x)
∴當(dāng)x∈(-∞,0)時,xf′(x)+f(x)<0,即F'(x)<0
由此可得F(x)=xf(x)在區(qū)間(-∞,0)上是減函數(shù),
∵函數(shù)y=f(x)是定義在實數(shù)集R上的奇函數(shù),
∴F(x)=xf(x)是定義在實數(shù)集R上的偶函數(shù),在區(qū)間(0,+∞)上F(x)=xf(x)是增函數(shù).
∵0<lg3<lg10=1,$\sqrt{3}$∈(1,2)
∴F(2)>F($\sqrt{3}$)>F(lg3)
∵log3$\frac{1}{3}$=-1,從而F(log3$\frac{1}{3}$)=F(-1)=F(1)
∴F($\sqrt{3}$)>F(log3$\frac{1}{3}$)>F(lg3)
得a>c>b,
故答案為:D

點評 本題給出抽象函數(shù),比較幾個函數(shù)值的大。乜疾榱死脤(dǎo)數(shù)研究函數(shù)的單調(diào)性、不等式比較大小和函數(shù)單調(diào)性與奇偶性關(guān)系等知識,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,在直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=CD=1,P是AB的中點,則$\overrightarrow{DP}•\overrightarrow{AB}$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)有關(guān)于x的一元二次方程x2+2ax+b2=0.
(1)若a是從0,1,2三個數(shù)中任取的一個數(shù),b是從0,1,2,3四個數(shù)中任取的一個數(shù),求上述方程有實根的概率;
(2)若a是從區(qū)間[0,2]任取的一個數(shù),b是從區(qū)間[0,3]任取的一個數(shù),求上述方程有實數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.定義在R上的函數(shù)f(x),滿足當(dāng)x>0時,f(x)>1,且對任意的x,y∈R,有f(x+y)=f(x)•f(y),f(2)=3.
(1)求f(0)的值;
(2)求證:對任意x∈R,都有f(x)>0;
(3)解不等式f(7+2x)>9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如果函數(shù)f(x)=3cos(2x+$\frac{π}{6}$),則f(x)的圖象(  )
A.關(guān)于點(-$\frac{π}{12}$,0)對稱B.關(guān)于點($\frac{π}{6}$,0)對稱
C.關(guān)于直線x=$\frac{π}{6}$對稱D.關(guān)于直線x=$\frac{π}{2}$對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知圓A方程為(x+3)2+y2=9,圓B方程為(x-1)2+y2=1,求圓A與圓B的外公切線直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖是正方體的側(cè)面展開圖,l1、l2是兩條側(cè)面對角線,則在此正方體中,l1與l2(  )
A.互相平行B.相交且夾角為$\frac{π}{3}$C.異面且互相垂直D.異面且夾角為$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x)=4x5+3x4+2x3-x2-x-$\frac{1}{2}$,用秦九韶算法求f(-2)等于( 。
A.-$\frac{197}{2}$B.$\frac{197}{2}$C.$\frac{183}{2}$D.-$\frac{183}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.拋物線x=-$\frac{1}{4}$y2的準(zhǔn)線方程為x=1.

查看答案和解析>>

同步練習(xí)冊答案