15.設(shè)常數(shù)a使方程$\sqrt{3}$sinx+cosx=a在閉區(qū)間[0,2π]上恰有三個(gè)解x1,x2,x3,則x1+x2+x3=$\frac{8π}{3}$.

分析 由題意可得a=1,根據(jù)正弦函數(shù)的圖象的對(duì)稱性可得x1+$\frac{π}{6}$+x2+$\frac{π}{6}$=2•$\frac{π}{2}$=π,x3+$\frac{π}{6}$=$\frac{13π}{6}$,由此求得 x1+x2+x3的值.

解答 解:常數(shù)a使方程$\sqrt{3}$sinx+cosx=a,即 2sin(x+$\frac{π}{6}$)=a,即方程sin(x+$\frac{π}{6}$)=$\frac{a}{2}$在閉區(qū)間[0,2π]上恰有三個(gè)解x1,x2,x3,
根據(jù)x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{13π}{6}$],sin(x+$\frac{π}{6}$)∈[-1,1],∴$\frac{a}{2}$=$\frac{1}{2}$,∴a=1.
則根據(jù)正弦函數(shù)的圖象的對(duì)稱性可得x1+$\frac{π}{6}$+x2+$\frac{π}{6}$=2•$\frac{π}{2}$=π,x3+$\frac{π}{6}$=$\frac{13π}{6}$,
∴x1+x2=$\frac{2π}{3}$,x3=2π,∴x1+x2+x3=$\frac{8π}{3}$,
故答案為:$\frac{8π}{3}$.

點(diǎn)評(píng) 本題主要考查正弦函數(shù)的圖象和性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x≤0時(shí),f(x)=3x2-2x,則f(1)=( 。
A.5B.1C.-1D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一個(gè)人在打靶中連續(xù)射擊兩次,事件“至少有一次中靶”的互斥事件是(  )
A.至多有一次中靶B.兩次都中靶C.兩次都不中靶D.只有一次中靶

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求函數(shù)$y=sinx+\sqrt{3}cosx$的周期,最小值,及單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知角α的終邊與單位圓相交于點(diǎn)$P({{{\frac{4}{5}}_{\;}},-\frac{3}{5}})$,現(xiàn)將角α的終邊繞坐標(biāo)原點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)$\frac{π}{3}$,所得射線與單位圓相交于點(diǎn)Q,則點(diǎn)Q的橫坐標(biāo)為( 。
A.$\frac{{4+3\sqrt{3}}}{10}$B.$\frac{{4-3\sqrt{3}}}{10}$C.$\frac{{3+4\sqrt{3}}}{10}$D.$\frac{{4\sqrt{3}-3}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知$\overrightarrow{a}$=(1,0),$\overrightarrow$=(0,1),若向量$\overrightarrow{c}$滿足|$\overrightarrow{c}$-$\overrightarrow{a}$-$\overrightarrow$|=2,則|$\overrightarrow{c}$|的最大值為2+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.點(diǎn)P是雙曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1的右支上一點(diǎn),點(diǎn)M,N分別是圓(x+5)2+y2=4和(x-5)2+y2=1上的動(dòng)點(diǎn),則|PM|-|PN|的最小值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.為迎接中共十九大,某校舉辦了“祖國(guó),你好”詩歌朗誦比賽.該校高三年級(jí)準(zhǔn)備從包括甲、乙、丙在內(nèi)的7名學(xué)生中選派4名學(xué)生參加,要求甲、乙、丙這3名學(xué)生中至少有1人參加,且當(dāng)這 3名學(xué)生都參加時(shí),甲和乙的朗誦順序不能相鄰,那么選派的4名學(xué)生不同的朗誦順序的種數(shù)為(  )
A.720B.768C.810D.816

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知cosθ=-$\frac{7}{25}$,θ∈(π,2π),則sin$\frac{θ}{2}$+cos$\frac{θ}{2}$=$\frac{1}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案