【題目】在空間中,過(guò)點(diǎn)A作平面π的垂線,垂足為B,記B=fπ(A).設(shè)α,β是兩個(gè)不同的平面,對(duì)空間任意一點(diǎn)P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2 , 則(
A.平面α與平面β垂直
B.平面α與平面β所成的(銳)二面角為45°
C.平面α與平面β平行
D.平面α與平面β所成的(銳)二面角為60°

【答案】A
【解析】解:設(shè)P1=fα(P),則根據(jù)題意,得點(diǎn)P1是過(guò)點(diǎn)P作平面α垂線的垂足
∵Q1=fβ[fα(P)]=fβ(P1),
∴點(diǎn)Q1是過(guò)點(diǎn)P1作平面β垂線的垂足
同理,若P2=fβ(P),得點(diǎn)P2是過(guò)點(diǎn)P作平面β垂線的垂足
因此Q2=fα[fβ(P)]表示點(diǎn)Q2是過(guò)點(diǎn)P2作平面α垂線的垂足
∵對(duì)任意的點(diǎn)P,恒有PQ1=PQ2 ,
∴點(diǎn)Q1與Q2重合于同一點(diǎn)
由此可得,四邊形PP1Q1P2為矩形,且∠P1Q1P2是二面角α﹣l﹣β的平面角
∵∠P1Q1P2是直角,∴平面α與平面β垂直
故選:A

【考點(diǎn)精析】掌握空間中直線與平面之間的位置關(guān)系和平面與平面之間的位置關(guān)系是解答本題的根本,需要知道直線在平面內(nèi)—有無(wú)數(shù)個(gè)公共點(diǎn);直線與平面相交—有且只有一個(gè)公共點(diǎn);直線在平面平行—沒(méi)有公共點(diǎn);兩個(gè)平面平行沒(méi)有交點(diǎn);兩個(gè)平面相交有一條公共直線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C的圓心在x軸正半軸上,半徑為5,且與直線相切.

(1)求圓C的方程;

(2)設(shè)點(diǎn),過(guò)點(diǎn)作直線與圓C交于兩點(diǎn),若,求直線的方程;

(3)設(shè)P是直線上的點(diǎn),過(guò)P點(diǎn)作圓C的切線,切點(diǎn)為求證:經(jīng)過(guò) 三點(diǎn)的圓必過(guò)定點(diǎn),并求出所有定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位招聘員工,有名應(yīng)聘者參加筆試,隨機(jī)抽查了其中名應(yīng)聘者筆試試卷,統(tǒng)計(jì)他們的成績(jī)?nèi)缦卤恚?/span>

分?jǐn)?shù)段

人數(shù)

1

3

6

6

2

1

1

若按筆試成績(jī)擇優(yōu)錄取名參加面試,由此可預(yù)測(cè)參加面試的分?jǐn)?shù)線為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果某地的財(cái)政收入與支出滿足線性回歸方程(單位:億元),其中,如果今年該地區(qū)財(cái)政收入10億元,則年支出預(yù)計(jì)不會(huì)超過(guò)( )

A. 10.5億 B. 10億 C. 9.5億 D. 9億

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知e為自然對(duì)數(shù)的底數(shù),設(shè)函數(shù)f(x)=(ex﹣1)(x﹣1)k(k=1,2),則(
A.當(dāng)k=1時(shí),f(x)在x=1處取得極小值
B.當(dāng)k=1時(shí),f(x)在x=1處取得極大值
C.當(dāng)k=2時(shí),f(x)在x=1處取得極小值
D.當(dāng)k=2時(shí),f(x)在x=1處取得極大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查觀眾對(duì)電視劇《風(fēng)箏》的喜愛(ài)程度,某電視臺(tái)舉辦了一次現(xiàn)場(chǎng)調(diào)查活動(dòng).在參加此活動(dòng)的甲、乙兩地大量觀眾中,各隨機(jī)抽取了8名觀眾對(duì)該電視劇評(píng)分做調(diào)查(滿分100分),被抽取的觀眾的評(píng)分結(jié)果如圖所示.

(1)從甲地抽取的8名觀眾和乙地抽取的8名觀眾中分別各選取一人,在已知兩人中至少一人評(píng)分不低于90分的條件下,求乙地被選取的觀眾評(píng)分低于90分的概率。

(2)從甲地抽取出來(lái)的8名觀眾中選取1人,從乙地抽取出來(lái)的8名觀眾中選取2人去參加代表大會(huì),記選取的3人中評(píng)分不低于90分的人數(shù)為,求的分布列與期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分16分)已知是虛數(shù), 是實(shí)數(shù).

(1)求為何值時(shí), 有最小值,并求出|的最小值;

(2)設(shè),求證: 為純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè).

(1)的單調(diào)區(qū)間;

(2)求的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥底面ABC,AB=AC=2AA1 , ∠BAC=120°,D,D1分別是線段BC,B1C1的中點(diǎn),P是線段AD的中點(diǎn).

(1)在平面ABC內(nèi),試做出過(guò)點(diǎn)P與平面A1BC平行的直線l,說(shuō)明理由,并證明直線l⊥平面ADD1A1;
(2)設(shè)(1)中的直線l交AB于點(diǎn)M,交AC于點(diǎn)N,求二面角A﹣A1M﹣N的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案