A. | 減函數(shù) | B. | 增函數(shù) | C. | 先增后減 | D. | 先減后增 |
分析 利用函數(shù)的單調(diào)性判斷a,b的范圍,然后利用二次函數(shù)的性質(zhì)判斷選項(xiàng)即可.
解答 解:函數(shù)y=-ax與y=$\frac{x}$在(-∞,0)上都是減函數(shù),
可得a>0,b>0,則y=ax2+bx的開(kāi)口向上,對(duì)稱軸:x=-$\frac{2a}$<0,
則y=ax2+bx在(-∞,0)上是先減后增.
故選:D.
點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性的判斷與應(yīng)用,二次函數(shù)的簡(jiǎn)單性質(zhì)的應(yīng)用,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,1) | B. | (-3,0) | C. | (-2,0) | D. | (-1,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {0,1} | B. | {1,2} | C. | {0,1,2} | D. | {2,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -log23 | B. | -2log23 | C. | 1-log23 | D. | 3-2log23 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com