分析 (1)由DD1⊥平面ABCD,知∠D1BD是直線BD1面ABCD所成角,由此能求出直線BD1面ABCD所成角正切值.
(2)設(shè)AC∩BD=O,連結(jié)PO,∠POD是平面PAC與面ACD所成角,由此能求出平面PAC與面ACD所成角的正弦值.
解答 解:(1)∵長(zhǎng)方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,
DD1⊥平面ABCD,
∴∠D1BD是直線BD1面ABCD所成角,
∴tan∠D1BD=$\frac{D{D}_{1}}{BD}$=$\frac{2}{\sqrt{{1}^{2}+{1}^{2}}}$=$\sqrt{2}$,
∴直線BD1面ABCD所成角正切值為$\sqrt{2}$.
(2)∵AB=AD=1,AA1=2,點(diǎn)P為DD1的中點(diǎn),
∴PC=PA=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$,CO=DO=$\frac{1}{2}\sqrt{{1}^{2}+{1}^{2}}$=$\frac{\sqrt{2}}{2}$,
設(shè)AC∩BD=O,連結(jié)PO,
則PO⊥AC,DO⊥AC,
∴∠POD是平面PAC與面ACD所成角,
PO=$\sqrt{P{C}^{2}-C{O}^{2}}$=$\sqrt{2-\frac{1}{2}}$=$\frac{\sqrt{6}}{2}$,
∴sin∠POD=$\frac{PD}{PO}$=$\frac{1}{\frac{\sqrt{6}}{2}}$=$\frac{\sqrt{6}}{3}$.
∴平面PAC與面ACD所成角的正弦值為$\frac{\sqrt{6}}{3}$.
點(diǎn)評(píng) 本題考查線面角的正切值的求法,考查面面角的正弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 減函數(shù) | B. | 增函數(shù) | C. | 先增后減 | D. | 先減后增 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)先增加后減少 | B. | f(x)先減少后增加 | C. | f(x)在R上是增函數(shù) | D. | f(x)在R上是減函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\sqrt{2}$ | C. | 3 | D. | $\sqrt{2}+1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>c>b | B. | b>c>a | C. | a>b>c | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com