8.在某項體育比賽中,五位裁判為一選手打出的分數(shù)如下:
92     89       95     91       93
去掉一個最高分和一個最低分后,所剩數(shù)的平均值和方差分別為( 。
A.92,4B.93,5C.93,4D.92,$\frac{2}{3}$

分析 去掉一個最高分和一個最低分后,先求出所剩數(shù)的平均值,由此能求出方差.

解答 解:五位裁判為一選手打出的分數(shù)如下:
92 89 95 91 93
去掉一個最高分和一個最低分后,
所剩數(shù)的平均值為:$\overline{x}$=$\frac{1}{3}$(92+91+93)=92,
方差為:S2=$\frac{1}{3}$[(92-92)2+(91-92)2+(92-93)2]=$\frac{2}{3}$.
故選:D.

點評 本題考查平均值、方差的求法,是基礎(chǔ)題,解題時要認真審題,注意平均值、方差的性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

18.已知集合A={x|x2<4},B={x∈Z|-3≤x<1},則A∩B=( 。
A.{-2,-1,0}B.(-1,0)C.{-1,0}D.(-3,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知在Rt△AOB中,AO=1,BO=2,如圖,動點P是在以O(shè)點為圓心,OB為半徑的扇形內(nèi)運動(含邊界)且∠BOC=90°;設(shè)$\overrightarrow{OP}=x\overrightarrow{OA}+y\overrightarrow{OB}$,則x+y的取值范圍[-2,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,在三棱柱ABC-A1B1C1中,四邊形A1ABB1為菱形,∠A1AB=45°,四邊形BCC1B1為矩形,若AC=5,AB=4,BC=3.
(1)求證:BC∥平面A1B1C1;
(2)求證:AB1⊥平面A1BC;
(3)求三棱錐C-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖建立空間直角坐標系,已知正方體的棱長為2.
(1)求正方體各頂點的坐標;
(2)求A1C的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.某校從參加高二年級期末考試的學生中抽出60名學生,將其數(shù)學成績(均為整數(shù))分成六段后畫出如下頻率分布直方圖.觀察圖形的信息,回答下列問題:這次考試的中位數(shù)為73.3 (結(jié)果保留一位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(0,$\sqrt{3}$),離心率為$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)求過點(1,0)且斜率為1的直線被橢圓C所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,ABCD是邊長2的菱形,其中∠DAB=60°,ED垂直平面ABCD,ED=1,EF∥BD且2EF=BD.
(1)求證:平面EAC⊥垂直平面BDEF;
(2)求幾何體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.為了保護環(huán)境發(fā)展低碳經(jīng)濟,某單位在國家科研部門的支持下,進行技術(shù)攻關(guān),新上了把二氧化碳處理轉(zhuǎn)化為一種可利用的化工產(chǎn)品的項目,經(jīng)測算,該項目月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為f(x)=$\left\{\begin{array}{l}{\frac{1}{3}{x}^{3}-80{x}^{2}+5140x,x∈[120,144]}\\{\frac{1}{2}{x}^{2}-100x+80000,x∈[144,400]}\end{array}\right.$且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價值為300元,若該項目不獲利,國家將給予補償.
(Ⅰ)當x∈[150,300]時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家每月至少需要補貼多少元才能使該項目不虧損?
(Ⅱ)該項目每月處理量為多少噸時?才能使每噸的平均處理成本最低?

查看答案和解析>>

同步練習冊答案