分析 (1)證明BC∥B1C1,然后證明BC∥平面A1B1C1.
(2)證明CB⊥AB.CB⊥BB1,推出CB⊥面AA1B1B,得到CB⊥AB1,然后證明AB1⊥A1B,即可證明AB1⊥面A1BC.
(3)過(guò)B作BD⊥A1B1于D,說(shuō)明BD⊥面AA1B1B,然后求解幾何體的體積即可.
解答 解:(1)證明:∵四邊形BCC1B1為矩形,
∴BC∥B1C1,
∵BC?平面A1B1C1,B1C1?平面A1B1C1,
∴BC∥平面A1B1C1.
(2)證明:在△ABC中AC=5,AB=4,BC=3,
滿(mǎn)足AC2=AB2+BC2,所以∠ABC=90°,即CB⊥AB.
又因?yàn)樗倪呅蜝CC1B1為矩形,所以CB⊥BB1,
又$\left\{\begin{array}{l}CB⊥B{B_1}\\ CB⊥AB\\ B{B_1}?面A{A_1}{B_1}B\\ AB?面A{A_1}{B_1}B\\ B{B_1}∩AB=B\end{array}\right.$,所以CB⊥面AA1B1B,
又因?yàn)锳B1?面AA1B1B,所以CB⊥AB1,
又因?yàn)樗倪呅蜛1ABB1為菱形,所以AB1⊥A1B,
又$\left\{\begin{array}{l}A{B_1}⊥CB\\ A{B_1}⊥{A_1}B\\ CB?面{A_1}BC\\{A_1}B?面{A_1}BC\\ CB∩{A_1}B=B\end{array}\right.$,所以AB1⊥面A1BC.
(3)解:過(guò)B作BD⊥A1B1于D,
由第(1)問(wèn)已證CB⊥面AA1B1B,
∴C1B1⊥面AA1B1B,
∴C1B1⊥BD,
∴BD⊥面AA1B1B,
由題設(shè)知$BD=2\sqrt{2}$,
∴${V_{錐C-{A_1}{B_1}{C_1}}}=\frac{1}{3}×\frac{1}{2}{A_1}{B_1}•{B_1}{C_1}•BD=\frac{1}{3}×\frac{1}{2}×4×3×2\sqrt{2}$=$4\sqrt{2}$.
∴三棱錐C-A1B1C1的體積是$4\sqrt{2}$.
點(diǎn)評(píng) 本題考查直線與平面平行、直線與平面垂直的判定定理的應(yīng)用,幾何體的體積的求法,考查空間想象能力邏輯推理能力以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,1) | B. | (-∞,-1)∪(3,+∞) | C. | (-3,3) | D. | (-∞,-3)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{2017}$ | B. | $\frac{2π}{2017}$ | C. | $\frac{4π}{2017}$ | D. | $\frac{π}{4034}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{68}{5}$ | B. | $\frac{69}{5}$ | C. | 14 | D. | $\frac{71}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 92,4 | B. | 93,5 | C. | 93,4 | D. | 92,$\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com