10.設復數(shù)z滿足z(1+i)=i(i為虛數(shù)單位),則|z|=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.1D.$\sqrt{2}$

分析 先求出復數(shù)z,然后利用求模公式可得答案.

解答 解:由z(1+i)=i得z=$\frac{i}{1+i}$=$\frac{i(1-i)}{(1+i)(1-i)}$=$\frac{1}{2}$+$\frac{1}{2}$i,
則則|z|=$\sqrt{(\frac{1}{2})^{2}+(\frac{1}{2})^{2}}$=$\frac{\sqrt{2}}{2}$,
故選:B

點評 本題考查復數(shù)代數(shù)形式的運算、復數(shù)求模,屬基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

20.過點P(-1,0)作直線與拋物線y2=8x相交于A,B兩點,且2|PA|=|AB|,則點B到該拋物線焦點的距離為5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,拋物線E:y2=2px(p>0)與圓O:x2+y2=8相交于A,B兩點,且點A的橫坐標為2.過劣弧AB上動點P(x0,y0)作圓O的切線交拋物線E于C,D兩點,分別以C,D為切點作拋物線E的切線l1,l2,l1與l2相交于點M.
(Ⅰ)求p的值;
(Ⅱ)求動點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖的幾何體中,AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB=2,F(xiàn)為CD的中點.
(1)求證:AF∥平面BCE;
(2)求A到平面BCE的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.曲線$y={(\frac{1}{3})^x}$與$y={x^{\frac{1}{2}}}$的交點橫坐標所在區(qū)間為( 。
A.$(0,\;\frac{1}{3})$B.$(\frac{1}{3},\;\frac{1}{2})$C.$(\frac{1}{2},\;\frac{2}{3})$D.$(\frac{2}{3},\;1)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知點(x,y)滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+y≤2a}\\{x-y≤a}\end{array}\right.$(其中a為正實數(shù)),則z=2x-y的最大值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知集合A={0,1,2,3,4},B={x|x2-2x>0},則A∩B=( 。
A.(2,4]B.[2,4]C.{0,3,4}D.{3,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設F為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的右焦點,若OF的垂直平分線與漸近線在第一象限內的交點到另一條漸近線的距離為$\frac{1}{2}|OF|$,則雙曲線的離心率為(  )
A.$2\sqrt{2}$B.$\frac{{2\sqrt{3}}}{3}$C.$2\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.若數(shù)列{an}的前n項和Sn=n2-10n(n=1,2,3,…),
(1)求a1,a2的值;
(2)求此數(shù)列的通項公式.

查看答案和解析>>

同步練習冊答案