A. | ?x0∈R,使得${e^{x_0}}≤0$ | |
B. | $sinx+\frac{1}{sinx}≥2(x≠kπ,k∈Z)$ | |
C. | ?x∈R,2x>x2 | |
D. | 若命題p:?x0∈R,使得$x_0^2-{x_0}+1<0$,則¬p:?x0∈R,都有x2-x+1≥0 |
分析 根據(jù)指數(shù)函數(shù)的性質(zhì),可判斷A;求出$sinx+\frac{1}{sinx}$的范圍,可判斷B;舉出反例x=2,可判斷C;寫(xiě)出原命題的否定,可判斷D.
解答 解:${e}^{{x}_{\;}}>0$恒成立,故A錯(cuò)誤;
$sinx+\frac{1}{sinx}≥2,或sinx+\frac{1}{sinx}≤-2(x≠kπ,k∈Z)$,故B錯(cuò)誤;
當(dāng)x=2時(shí),2x=x2,故C錯(cuò)誤;
若命題p:?x0∈R,使得$x_0^2-{x_0}+1<0$,則¬p:?x0∈R,都有x2-x+1≥0,則D正確;
故選:D.
點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了命題的否定,復(fù)合命題等知識(shí)點(diǎn),難度基礎(chǔ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<ab<ab2 | B. | ab<a<ab2 | C. | ab<ab2<a | D. | ab2<a<ab |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{15}{2}$ | C. | $\frac{5}{4}$ | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x+y-7=0 | B. | x-y+7=0 | C. | x+y+6=0 | D. | x-y-6=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\sqrt{3}$,2$\sqrt{3}$) | B. | ($\sqrt{3}$,3$\sqrt{3}$) | C. | (3,$2\sqrt{3}$) | D. | (3,3$\sqrt{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=-x+4 | B. | y=3x | C. | y=3x-3 | D. | y=3x-9 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com