分析 令t=x2+x-3,則f(x)=g(t)=2t,本題即求函數(shù)t的增區(qū)間,再利用二次函數(shù)的性質(zhì)得出結(jié)論.
解答 解:令t=x2+x-3=${(x+\frac{1}{2})}^{2}$-$\frac{13}{4}$,故函數(shù)t的圖象的對稱軸為x=-$\frac{1}{2}$,f(x)=g(t)=2t,
故f(x)的增區(qū)間即為函數(shù)t的增區(qū)間,而函數(shù)t的增區(qū)間為$({-\frac{1}{2},+∞})$,
故答案為:(-$\frac{1}{2}$,+∞).
點評 本題主要考查復合函數(shù)的單調(diào)性,指數(shù)函數(shù)、二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①② | B. | ①②③ | C. | ①②④ | D. | ①②③④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=sinx | B. | y=-sin2x | C. | $y=cos({2x+\frac{π}{4}})$ | D. | $y=cos({\frac{x}{2}+\frac{π}{4}})$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com