已知函數(shù)處取得極值.

(1)求實數(shù)的值;

(2)若關(guān)于的方程在區(qū)間上恰有兩個不同的實數(shù)根,求實數(shù)的取值范圍;

(3)證明:對任意的正整數(shù),不等式都成立.

 

【答案】

(1) a=1. (2), (3) 利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,然后再利用單調(diào)性及數(shù)列知識證明即可

【解析】

試題分析:(1)                

時,取得極值,                

解得經(jīng)檢驗a=1符合題意. 

(2)由a=1知 由,得 

在區(qū)間上恰有兩個不同的實數(shù)根等價于在區(qū)間上恰有兩個不同的實數(shù)根.           

當(dāng)時,,于是上單調(diào)遞增; 

當(dāng)時,,于是上單調(diào)遞減.

依題意有,

解得,               

(3) 的定義域為,由(1)知,

得,x=0或(舍去),  當(dāng)時, ,單調(diào)遞增;

當(dāng)時, ,單調(diào)遞減. 上的最大值.                        

,故(當(dāng)且僅當(dāng)x=0時,等號成立)

對任意正整數(shù)n,取得,  

.

.

考點:本題考查了導(dǎo)數(shù)的運用

點評:導(dǎo)數(shù)本身是個解決問題的工具,是高考必考內(nèi)容之一,高考往往結(jié)合函數(shù)甚至是實際問題考查導(dǎo)數(shù)的應(yīng)用,求單調(diào)、最值、完成證明等,請注意歸納常規(guī)方法和常見注意點

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013屆度江西南昌二中高二下學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題12分)已知函數(shù)處取得極值.

(1) 求;

(2 )設(shè)函數(shù),如果在開區(qū)間上存在極小值,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年貴州省畢節(jié)市高三上學(xué)期第三次月考理科數(shù)學(xué)試卷 題型:解答題

已知函數(shù)=處取得極值.

(1)求實數(shù)的值;

(2) 若關(guān)于的方程上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省高三第一次月考理科數(shù)學(xué)試卷 題型:解答題

(本小題滿分14分) 已知函數(shù)處取得極值。

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)求證:對于區(qū)間上任意兩個自變量的值,都有;

(Ⅲ)若過點可作曲線的三條切線,求實數(shù)的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣西柳鐵一中高三第三次月考文科數(shù)學(xué)試卷 題型:解答題

設(shè)函數(shù)為實數(shù)。

(Ⅰ)已知函數(shù)處取得極值,求的值;

(Ⅱ)已知不等式對任意都成立,求實數(shù)的取值范圍。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年甘肅省高三第二階段考試數(shù)學(xué)理卷 題型:解答題

(12分)已知函數(shù)處取得極值.

(Ⅰ)求實數(shù)的值;[來源:學(xué)+科+網(wǎng)]

(Ⅱ)若關(guān)于的方程在區(qū)間上恰有兩個不同的實數(shù)根,求實數(shù)的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案