分析 (Ⅰ)g(x)=f'(x)=ex-2ax,g'(x)=ex-2a,分a≤0,a>0討論.
(Ⅱ)令h(x)=ex-ax2-x-1,則h'(x)=ex-1-2ax,
由ex≥1+x恒成立,故h'(x)≥x-2ax=(1-2a)x,
分$a≤\frac{1}{2}$,$a>\frac{1}{2}$討論,求出a的取值范圍
解答 解:(Ⅰ)f(x)=ex-ax2,g(x)=f'(x)=ex-2ax,g'(x)=ex-2a,
當a≤0時,g'(x)>0恒成立,g(x)無極值;
當a>0時,g'(x)=0,即x=ln(2a),
由g'(x)>0,得x>ln(2a);由g'(x)<0,得x<ln(2a),
所以當x=ln(2a)時,有極小值2a-2aln(2a).
(Ⅱ)令h(x)=ex-ax2-x-1,則h'(x)=ex-1-2ax,注意到h(0)=h'(0)=0,
令k(x)=ex-1-x,則k'(x)=ex-1,且k'(x)>0,得x>0;k'(x)<0,得x<0,
∴k(x)≥k(0)=0,即ex≥1+x恒成立,故h'(x)≥x-2ax=(1-2a)x,
當$a≤\frac{1}{2}$時,1-2a≥0,h'(x)≥0,
于是當x≥0時,h(x)≥h(0)=0,即f(x)≥x+1成立.
當$a>\frac{1}{2}$時,由ex>1+x(x≠0)可得e-x>1-x(x≠0).
h'(x)<ex-1+2a(e-x-1)=e-x(ex-1)(ex-2a),
故當x∈(0,ln(2a))時,h'(x)<0,
于是當x∈(0,ln(2a))時,h(x)<h(0)=0,f(x)≥x+1不成立.
綜上,a的取值范圍為$(-∞,\frac{1}{2}]$.
點評 本題考查了導數(shù)的綜合應用,分類討論思想、轉(zhuǎn)化思想,屬于難題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $-\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{12}{25}$ | B. | $\frac{12}{25}$ | C. | $-\frac{24}{25}$ | D. | $\frac{24}{25}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com