16.等差數(shù)列{an}中,a3,a7是函數(shù)f(x)=x2-4x+3的兩個(gè)零點(diǎn),則{an}的前9項(xiàng)和等于(  )
A.-18B.9C.18D.36

分析 由韋達(dá)定理得a3+a7=4,從而{an}的前9項(xiàng)和S9=$\frac{9}{2}({a}_{1}+{a}_{9})$=$\frac{9}{2}({a}_{3}+{a}_{7})$,由此能求出結(jié)果.

解答 解:∵等差數(shù)列{an}中,a3,a7是函數(shù)f(x)=x2-4x+3的兩個(gè)零點(diǎn),
∴a3+a7=4,
∴{an}的前9項(xiàng)和S9=$\frac{9}{2}({a}_{1}+{a}_{9})$=$\frac{9}{2}({a}_{3}+{a}_{7})$=$\frac{9}{2}×4=18$.
故選:C.

點(diǎn)評(píng) 本題考查等差數(shù)列的前9項(xiàng)和公式的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.高為$\sqrt{2}$的四棱錐S-ABCD的底面是邊長(zhǎng)為1的正方形,點(diǎn)S,A,B,C,D均在半徑為1的同一球面上,則底面ABCD的中心與頂點(diǎn)S之間的距離為$\frac{{\sqrt{10}}}{2}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),過(guò)E點(diǎn)做EF⊥PB交PB于點(diǎn)F.求證:
(1)PA∥平面DEB;
(2)PB⊥平面DEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知點(diǎn)A(2,1)和B(-1,3),若直線3x-2y-a=0與線段AB相交,則a的取值范圍是(  )
A.-4≤a≤9B.a≤-4或a≥9C.-9≤a≤4D.a≤-9或a≥4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在直角坐標(biāo)系xOy中,直線l:$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{5}+2t}\end{array}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2cos2θ+4=0.
(Ⅰ)寫出曲線C的直角坐標(biāo)方程;
(Ⅱ)已知點(diǎn)A(0,$\sqrt{5}$),直線l與曲線C相交于點(diǎn)M、N,求$\frac{1}{|AM|}$+$\frac{1}{|AN|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.過(guò)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)F做圓x2+y2=a2的切線,切點(diǎn)為M,切線交y軸于點(diǎn)P,且$\overrightarrow{FM}$=2$\overrightarrow{MP}$,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖,面積為4的矩形ABCD中有一個(gè)陰影部分,若往矩形ABCD中隨機(jī)投擲1000個(gè)點(diǎn),落在矩形ABCD的非陰影部分中的點(diǎn)數(shù)為350個(gè),試估計(jì)陰影部分的面積為( 。
A.1.4B.1.6C.2.6D.2.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若橢圓$\frac{y^2}{16}+\frac{x^2}{9}=1和雙曲線\frac{y^2}{4}-\frac{x^2}{5}=1$的共同焦點(diǎn)為F1、F2,P是兩曲線的一個(gè)交點(diǎn),則|PF1|•|PF2|的值為(  )
A.12B.14C.3D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.點(diǎn)M(x1,y1)在函數(shù)y=-2x+8的圖象上,當(dāng)x1∈[2,5]時(shí),則$\frac{{{y_1}+1}}{{{x_1}+1}}$的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案