16.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足S4=24,S7=63.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若${b_n}={2^{a_n}}+{({-1})^n}•{a_n}$,求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (I)利用等差數(shù)列的求和公式及其通項(xiàng)公式即可得出.
(II)通過(guò)分類(lèi)討論,利用等差數(shù)列與等比數(shù)列的求和公式即可得出.

解答 解:(Ⅰ)因?yàn)閧an}為等差數(shù)列,
所以$\left\{\begin{array}{l}{S_4}=4{a_1}+\frac{4×3}{2}d=24\\{S_7}=7{a_1}+\frac{7×6}{2}d=63\end{array}\right.⇒\left\{\begin{array}{l}{a_1}=3\\ d=2\end{array}\right.⇒{a_n}=2n+1$.
(Ⅱ)∵${b_n}={2^{a_n}}+{({-1})^n}•{a_n}={2^{2n+1}}+{({-1})^n}•({2n+1})=2×{4^n}+{({-1})^n}•({2n+1})$
∴${T_n}=2({{4^1}+{4^2}+…+{4^n}})+[{-3+5-7+9-…+{{({-1})}^n}({2n+1})}]=\frac{{8({{4^n}-1})}}{3}+{G_n}$,
當(dāng)n=2k(k∈N*)時(shí),${G_n}=2×\frac{n}{2}=n$,∴${T_n}=\frac{{8({{4^n}-1})}}{3}+n$
當(dāng)n=2k-1(k∈N*)時(shí),${G_n}=2×\frac{n-1}{2}-({2n+1})=-n-2$,
∴${T_n}=\frac{{8({{4^n}-1})}}{3}-n-2$,∴${T_n}=\left\{\begin{array}{l}\frac{{8({{4^n}-1})}}{3}+n({n=2k,k∈{N^*}})\\ \frac{{8({{4^n}-1})}}{3}-n-2({n=2k-1,k∈{N^*}})\end{array}\right.$.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式,考查了分類(lèi)討論方法、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)f(x)的定義域?yàn)镽,周期為1,當(dāng)0≤x<1時(shí)f(x)=x,若函數(shù)f(x)的圖象與$g(x)=2{x^2}+\sqrt{k}$的圖象只有一個(gè)交點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A.$[\frac{1}{64},1]$B.$[\frac{1}{8},1]$C.$(\frac{1}{64},1)$D.$(\frac{1}{8},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.某幾何體的三視圖如圖所示,圖中的四邊形都是邊長(zhǎng)為1的正方體,兩條虛線互相垂直,則該幾何體的體積是( 。
A.$\frac{2}{3}$B.$\frac{5}{6}$C.$1-\frac{π}{6}$D.$1-\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,Sn=2an-n(n∈N*).
(1)求證:數(shù)列{an+1}成等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)數(shù)列{an}中是否存在連續(xù)三項(xiàng)可以構(gòu)成等差數(shù)列?若存在,請(qǐng)求出一組適合條件的三項(xiàng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知(ax+b)6的展開(kāi)式中x4項(xiàng)的系數(shù)與x5項(xiàng)的系數(shù)分別為135與-18,則(ax+b)6展開(kāi)式所有項(xiàng)系數(shù)之和為( 。
A.-1B.1C.32D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\sqrt{3}+\sqrt{3}t\end{array}\right.$(t為參數(shù))以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線C的方程為$sinθ-\sqrt{3}ρ{cos^2}θ=0$.
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)寫(xiě)出直線l與曲線C交點(diǎn)的一個(gè)極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.從正五邊形的5個(gè)頂點(diǎn)中隨機(jī)選擇3個(gè)頂點(diǎn),則以它們作為頂點(diǎn)的三角形是銳角三角形的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列說(shuō)法正確的是( 。
A.“sinα=$\frac{3}{5}$”是“cos2α=$\frac{7}{25}$”的必要不充分條件
B.已知命題p:?x∈R,使2x>3x;命題q:?x∈(0,+∞),都有$\frac{1}{{x}^{2}}$<$\frac{1}{{x}^{3}}$,則p∧(¬q)是真命題
C.命題“若xy=0,則x=0或y=0”的否命題是“若xy≠0,則x≠0或y≠0”
D.從勻速傳遞的生產(chǎn)流水線上,質(zhì)檢員每隔5分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這是分成抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.根據(jù)國(guó)家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)PM2.5的年平均濃度不得超過(guò)35微克/立方米,PM2.5的24小時(shí)平均濃度不得超過(guò)75微克/立方米.我市環(huán)保局隨機(jī)抽取了一居民區(qū)2016年20天PM2.5的24小時(shí)平均濃度(單位:微克/立方米)的監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如表:
組別PM2.5濃度
(微克/立方米)
頻數(shù)(天)頻率
 第一組(0,25]30.15
第二組(25,50]120.6
第三組(50,75]30.15
第四組(75,100]20.1
(1)將這20天的測(cè)量結(jié)果按上表中分組方法繪制成的樣本頻率分布直方圖如圖.
①求圖4中a的值;
②求樣本平均數(shù),并根據(jù)樣本估計(jì)總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說(shuō)明理由.
(2)將頻率視為概率,對(duì)于2016年的某3天,記這3天中該居民區(qū)PM2.5的24小時(shí)平均濃度符合環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)的天數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案