13.已知函數(shù)$f(x)={2016^x}+{log_{2016}}(\sqrt{{x^2}+1}+x)-{2016^{-x}}$+2,則關于x的不等式f(3x+1)+f(x)>4的解集為( 。
A.(-$\frac{1}{2016}$,+∞)B.(-$\frac{1}{3}$,+∞)C.(-$\frac{1}{2}$,+∞)D.(-$\frac{1}{4}$,+∞)

分析 可先設g(x)=2016x+log2016( $\sqrt{{x}^{2}+1}$+x)-2016-x,根據要求的不等式,可以想著判斷g(x)的奇偶性及其單調性:容易求出g(-x)=-g(x),通過求g′(x),并判斷其符號可判斷其單調性,從而原不等式可變成,g(3x+1)>g(-x),而根據g(x)的單調性即可得到關于x的一元一次不等式,解該不等式即得原不等式的解.

解答 解:設g(x)=2016x+log2016( $\sqrt{{x}^{2}+1}$+x)-2016-x,
g(-x)=2016-x+log2016( $\sqrt{{x}^{2}+1}$+x)-2016x+=-g(x);
g′(x)=2016xln2016+$\frac{\sqrt{{x}^{2}+1}-x}{(\sqrt{{x}^{2}+1}-x)\sqrt{{x}^{2}+1}ln2016}$+2016-xln2016>0;
∴g(x)在R上單調遞增;
∴由f(3x+1)+f(x)>4得,g(3x+1)+2+g(x)+2>4;
∴g(3x+1)>g(-x);
∴3x+1>-x;
解得x>-$\frac{1}{4}$;
∴原不等式的解集為(-$\frac{1}{4}$,+∞).
故選:D.

點評 查對數(shù)的運算,平方差公式,奇函數(shù)的判斷方法,根據函數(shù)導數(shù)符號判斷函數(shù)單調性的方法,函數(shù)單調性定義的運用,并注意正確求導.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.長方體ABCD-A1B1C1D1的底面是邊長為2的正方形,若在側棱AA1上至少存在一點E,使得∠C1EB=90°,則側棱AA1的長的最小值( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知點P(1+cosα,sinα),參數(shù)為α,點Q在曲線C:ρ=$\frac{9}{\sqrt{2}sin(θ+\frac{π}{4})}$上.
(1)求點P的軌跡方程和曲線C的直角坐標方程;
(2)求點P與點Q之間距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.如圖程序框圖的算法思路源于我國古代數(shù)學名著《九章算術》中的“更相減損術”.執(zhí)行該程序框圖,若輸入的a,b分別為63,98,則輸出的a=( 。
A.9B.3C.7D.14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.直線x=t分別與函數(shù)$f(x)=sin(2x-\frac{π}{12})+3$、g(x)=$\sqrt{3}cos(2x-\frac{π}{12})-1$的圖象交于P、Q兩點,當實數(shù)t變化時,|PQ|的最大值為( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.一束光線l自A(-3,3)發(fā)出,射到x軸上的點M后,被x軸反射到⊙C:x2+y2-4x-4y+7=0上.
(1)求反射線通過圓心C時,光線l的方程;
(2)求滿足條件的入射點M的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知函數(shù)f(x)=2$\sqrt{3}$sinxcosx-2sin2x,x∈R,則函數(shù)f(x)的單調遞增區(qū)間是[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知不等式|2x-1|-|x+1|<2的解集為{x|a<x<b}.
(1)求a,b的值;
(2)已知x>y>z,求證:存在實數(shù)k,使$-\frac{3a}{{2({x-y})}}+\frac{{4({y-z})}}≥\frac{k}{x-z}$恒成立,并求k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設集合P滿足{1,2}⊆P⊆{0,1,2,3,4},滿足條件的P的個數(shù)為8.

查看答案和解析>>

同步練習冊答案