已知:如下圖,平面PAB⊥平面ABC,平面PAC⊥平面ABC,AE⊥平面PBC,E為垂足.
(1)求證:PA⊥平面ABC;
(2)當(dāng)E為△PBC的垂心時(shí),求證:△ABC是直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:湖北省荊州中學(xué)2008高考復(fù)習(xí)立體幾何基礎(chǔ)題題庫(kù)一(有詳細(xì)答案)人教版 人教版 題型:044
已知:如下圖,P是正方形ABCD所在平面外一點(diǎn),PA=PB=PC=PD=a,AB=a.
求:平面APB與平面CPD相交所成較大的二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:導(dǎo)學(xué)大課堂必修二數(shù)學(xué)蘇教版 蘇教版 題型:044
有一塊木料如下圖所示,已知棱BC平行于平面.要經(jīng)過(guò)木料表面內(nèi)的一點(diǎn)P和棱BC將木料鋸開(kāi),應(yīng)怎樣畫(huà)線?所畫(huà)的線和平面AC有什么關(guān)系?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:044
(2006
湖南,18)如下圖,已知兩個(gè)正四棱錐P-ABCD與Q-ABCD的高分別為1和2,AB=4.(1)
證明:PQ⊥平面ABCD;(2)
求異面直線AQ與PB所成的角;(3)
求點(diǎn)P到平面QAD的距離.查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)證明PQ⊥平面ABCD;
(2)求異面直線AQ與PB所成的角;
(3)求點(diǎn)P到平面QAD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com