9.已知函數(shù)f(x)=$\left\{\begin{array}{l}kx+2,x≤0\\ lnx,x>0\end{array}$,若關(guān)于x的方程|f(x)|-e-x-2=0有3個(gè)不同的根,則非正實(shí)數(shù)k的取值范圍是(  )
A.(-∞,0]B.{-e}C.(-∞,-e]D.(-e,0]

分析 利用函數(shù)與方程之間的關(guān)系轉(zhuǎn)化為兩個(gè)函數(shù)的交點(diǎn)個(gè)數(shù)問題,利用數(shù)形結(jié)合進(jìn)行求解即可.

解答 解:由|f(x)|-e-x-2=0得|f(x)|=e-x+2,
設(shè)g(x)=e-x+2,
作出函數(shù)g(x)和f(x)的圖象如圖:
當(dāng)x>0時(shí),|f(x)|=e-x+2有兩個(gè)不同的根,
要使x的方程|f(x)|-e-x-2=0有3個(gè)不同的根,
則等價(jià)為當(dāng)x≤0時(shí),方程,|f(x)|=e-x+2有1個(gè)根,
∵k≤0,
∴由kx+2=0得x=-$\frac{2}{k}$>0,
即當(dāng)x≤0時(shí),y=kx+2與g(x)=e-x+2相切即可,
設(shè)切點(diǎn)為(a,e-a+2),則函數(shù)的導(dǎo)數(shù)g′(x)=-e-x,
則切線斜率k=-e-a,
則切線方程為y-(e-a+2)=-e-a(x-a),
即y=(e-a+2)-e-a(x-a),即y=-e-ax+(a+1)e-a+2,
∵y=kx+2,
∴k=-e-a,(a+1)e-a+2=2,
得(a+1)e-a=0,則a=-1,k=-e,
非正實(shí)數(shù)k的取值范圍是{-e},
故選:B.

點(diǎn)評(píng) 本題主要考查函數(shù)零點(diǎn)個(gè)數(shù)的判斷和應(yīng)用,根據(jù)函數(shù)與方程之間的關(guān)系轉(zhuǎn)化為兩個(gè)函數(shù)的交點(diǎn)個(gè)數(shù)問題,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.綜合性較強(qiáng),有一定的難度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,梯形ABCD中:AB∥DC,AB=2DC=10,BD=$\frac{4}{3}$AD=8,PO⊥平面ABCD,O、N分別是AD、AP的中點(diǎn).
(1)求證:DN∥平面PBC.
(2)若PA與平面ABCD所成的角為$\frac{π}{4}$,且$\frac{PM}{MC}$=$\frac{5}{4}$,求二面角P-AD-M的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=lnx-x+1,x∈(0,+∞),g(x)=x3-3a2x(a>0)
(1)求f(x)的最大值;
(2)若對(duì)?x1∈(0,+∞),總存在x2∈[1,2]使得f(x1)≤g(x2)成立,求a的取值范圍;
(3)利用(1)的結(jié)論,證明不等式($\frac{1}{n}$)n+($\frac{2}{n}$)n+…+($\frac{n}{n}$)n<$\frac{e}{e-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.解不等式|x-2|+|x-1|≥5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)處,極軸與x軸的正半軸重合,直線l的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}}$)=$\frac{{3\sqrt{2}}}{2}$,曲線C的參數(shù)方程是$\left\{\begin{array}{l}x=cosα\\ y=\sqrt{3}sinα\end{array}$(α是參數(shù)).
(I)求直線l及曲線C的直角坐標(biāo)方程;
(II)求曲線C上的點(diǎn)到直線l的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=ex+ax(a∈R),g(x)=lnx(e為自然對(duì)數(shù)的底數(shù)).
(1)設(shè)曲線y=f(x)在x=1處的切線為l,直線l與y=ex+3平行,求a的值;
(2)若對(duì)于任意實(shí)數(shù)x≥0,f(x)>0恒成立,試確定實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=-1時(shí),函數(shù)M(x)=g(x)-f(x)在[1,e]上是否存在極值?若存在,求出極值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.函數(shù)y=x+cosx的單調(diào)增區(qū)間為[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$)(k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點(diǎn)E,點(diǎn)D在AB上,DE⊥EB,且AD=2$\sqrt{3}$,AE=6
(1)證明:直線AC與△BDE的外接圓相切;
(2)求EC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$(a+1)x2+bx+c的導(dǎo)函數(shù)為f′(x),在區(qū)間(-2,0)內(nèi)任取兩個(gè)實(shí)數(shù)a,b,則f′(1)•f′(-1)<0的概率為$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案