20.如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,點D在AB上,DE⊥EB,且AD=2$\sqrt{3}$,AE=6
(1)證明:直線AC與△BDE的外接圓相切;
(2)求EC的長.

分析 (1)取BD的中點為O,連接OE,由角平分線的定義和兩直線平行的判定和性質(zhì),結(jié)合圓的切線的定義,即可得證;
(2)設(shè)△BDE的外接圓的半徑為r,運用直角三角形的勾股定理,和直角三角形的性質(zhì),即可得到所求EC的長.

解答 解:(1)證明:取BD的中點為O,連接OE,
由BE平分∠ABC,可得∠CBE=∠OBE,
又DE⊥EB,即有OB=OE,可得∠OBE=∠BEO,
可得∠CBE=∠BEO,即有BC∥OE,
可得∠AEO=∠C=90°,
則直線AC與△BDE的外接圓相切;
(2)設(shè)△BDE的外接圓的半徑為r,
在△AOE中,OA2=OE2+AE2,
且$AD=2\sqrt{3},AE=6$
即(r+2$\sqrt{3}$)2=r2+62,
解得r=2$\sqrt{3}$,OA=4$\sqrt{3}$,
由OA=2OE,可得∠A=30°,∠AOE=60°,
可得∠CBE=∠OBE=30°,BE=2rsin60°=$\sqrt{3}$r,
則EC=$\frac{1}{2}$BE=$\frac{1}{2}$•$\sqrt{3}$r=$\frac{1}{2}$×$\sqrt{3}$×2$\sqrt{3}$=3.

點評 本題考查圓的切線的定義,內(nèi)角平分線的定義和勾股定理的運用,考查推理能力和運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.求函數(shù)y=($\frac{1}{2}$)-x2+4x-3單調(diào)區(qū)間單調(diào)減區(qū)間為(-∞,2),單調(diào)增區(qū)間為[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}kx+2,x≤0\\ lnx,x>0\end{array}$,若關(guān)于x的方程|f(x)|-e-x-2=0有3個不同的根,則非正實數(shù)k的取值范圍是( 。
A.(-∞,0]B.{-e}C.(-∞,-e]D.(-e,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.四面體ABCD中,∠CDB=∠CAB=90°,∠BCD=∠BCA=30°,BC=2,點D在平面ABC上的射影在棱BC上,點M在棱BD上,BM=λBD.
(Ⅰ)求證:AD⊥BC;
(Ⅱ)二面角A-MC-B的余弦值為$\frac{\sqrt{5}}{5}$,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示的幾何體中,AD⊥平面APB,AD∥BC,AP⊥PB.
(1)求證:平面PAD⊥平面PBC;
(2)若AB=BC=2AD=2AP=2,點Q在線段AB上,且AQ=$\frac{1}{4}$AB,求二面角C-PQ-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在四棱錐P-ABCD中,底面ABCD為矩形,側(cè)棱PD⊥底面ABCD,且PD=CD=$\frac{\sqrt{2}}{2}$BC,過棱PC的中點E,作EF⊥PB交PB于點F,連接DE,DF,BD,BE.
(1)證明:PB⊥平面DEF;
(2)求異面直線AD與BE所成角的余弦值;
(3)二面角B-DE-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標(biāo)系xOy中,曲線C1:$\left\{{\begin{array}{l}{x=a+acosφ}\\{y=asinφ}\end{array}}$(φ為參數(shù),實數(shù)a>0),曲線C2:$\left\{{\begin{array}{l}{x=bcosφ}\\{y=b+bsinφ}\end{array}}$(φ為參數(shù),實數(shù)b>0).在以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,射線l:θ=α(ρ≥0,0≤α≤$\frac{π}{2}$)與C1交于O、A兩點,與C2交于O、B兩點.當(dāng)α=0時,|OA|=1;當(dāng)α=$\frac{π}{2}$時,|OB|=2.
(Ⅰ)求a,b的值;
(Ⅱ)求2|OA|2+|OA|•|OB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\sqrt{3}$sinωxcosωx-cos2ωx+$\frac{3}{2}$(ω∈R)的最小正周期為π,且圖象關(guān)于直線x=$\frac{π}{6}$對稱.
(1)求f(x)的解析式;
(2)若函數(shù)g(x)=f(-x))+a(0$≤x≤\frac{π}{2}$)有且只有一個零點,求實數(shù)a的取值范圍;
(3)若x1,x2是(2)中函數(shù)g(x)的兩個不同零點,求證:x1+x2=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖所示,圓O的弦CD垂直于直徑AB,垂足為H,HB=2CD,AH=1cm.求弦CD的長度.

查看答案和解析>>

同步練習(xí)冊答案