4.等腰△ABC的角A=$\frac{π}{3}$,|BC|=2,以A為圓心,$\sqrt{3}$為半徑作圓,MN為該圓的一條直徑,則$\overrightarrow{BM}•\overrightarrow{CN}$的最大值為2$\sqrt{3}$-1.

分析 利用平面向量的三角形法則,進(jìn)行數(shù)量積的運(yùn)算,得到關(guān)于夾角θ的余弦函數(shù)解析式,借助于有界性求最值即可.

解答 解:設(shè)$\overrightarrow{CB}$與$\overrightarrow{AM}$的夾角為θ,
∴$\overrightarrow{BM}•\overrightarrow{CN}$=($\overrightarrow{BA}$+$\overrightarrow{AM}$)•($\overrightarrow{CA}$+$\overrightarrow{AN}$)=$\overrightarrow{BA}$•$\overrightarrow{CA}$+$\overrightarrow{AM}$•($\overrightarrow{CA}$-$\overrightarrow{BA}$)-${\overrightarrow{AM}}^{2}$=2×2×$\frac{1}{2}$+$\overrightarrow{CB}$•$\overrightarrow{AM}$-3=2$\sqrt{3}$cosθ-1≤2$\sqrt{3}$-1
故答案為:$2\sqrt{3}-1$

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,借助于余弦函數(shù)的有界性求最值;屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)F是拋物線E:y2=2px(p>0)的焦點(diǎn),直線l過點(diǎn)F且與拋物線E交于A,B兩點(diǎn),若F是AB的中點(diǎn)且|AB|=8,則p的值是( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(m,3),m∈R,若$\overrightarrow{a}$⊥($\overrightarrow{a}+\overrightarrow$),則m=11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.《孫子算經(jīng)》是我國古代的數(shù)學(xué)名著,書中有如下問題:“今有五等諸侯,共分橘子六十顆,人別加三顆.問:五人各得幾何?”其意思為“有5個(gè)人分60個(gè)橘子,他們分得的橘子數(shù)成公差為3的等差數(shù)列,問5人各得多少橘子.”這個(gè)問題中,得到橘子最少的人所得的橘子個(gè)數(shù)是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在△ABC中,A=$\frac{π}{3}$,BC=3,D是BC的一個(gè)三等分點(diǎn),則AD的最大值是1+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合$M=\left\{{x\left|{\frac{x-2}{x-3}<0}\right.}\right\},N=\left\{{x\left|{{{log}_{\frac{1}{2}}}(x-2)≥1}\right.}\right\}$,則M∩N=( 。
A.$[{\frac{5}{2},3})$B.$({2,\frac{5}{2}}]$C.$[{2,\frac{5}{2}}]$D.$({\frac{5}{2},3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,三棱柱ABC-A1B1C1中,四邊形AA1BB1是菱形,∠BB1A1=$\frac{π}{3},{C_1}{B_1}⊥面A{A_1}B{B_1}$,二面角C-A1B1-B為$\frac{π}{6}$,CB=1.
(Ⅰ)求證:平面ACB1⊥平面CBA1;
(Ⅱ)求二面角A-A1C-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若直線ax+by+1=0(a>0,b>0)把圓(x+4)2+(y+1)2=16分成面積相等的兩部分,則$\frac{1}{2a}+\frac{2}$的最小值為( 。
A.10B.8C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若復(fù)數(shù)z滿足i(z-1)=1+i(i虛數(shù)單位),則z=(  )
A.2-iB.2+iC.1-2iD.1+2i

查看答案和解析>>

同步練習(xí)冊(cè)答案