19.已知x與y之間的一組數(shù)據(jù):
x0246
ya353a
已求得關于y與x的線性回歸方程y=1.2x+0.4,則a的值為2.

分析 求出樣本中心,代入回歸直線方程求解即可.

解答 解:由題意可得:$\overline{x}=\frac{0+2+4+6}{4}$=3,$\overline{y}$=$\frac{4a+3+5}{4}$=a+2,
可得:a+2=1.2×3+0.4,解得a=2.
故答案為:2.

點評 本題考查回歸直線方程的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

9.若長度為x2+4,4x,x2+6的三條線段可以構成一個銳角三角形,則x取值范圍是x$>\frac{\sqrt{15}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知數(shù)列{an}為等差數(shù)列,且a1=1,a5=5,等比數(shù)列{bn}的前n項和${S_n}=2-\frac{1}{{{2^{n-1}}}},(n∈{N^*})$.
(1)求數(shù)列{an},{bn}的通項公式;
(2)若cn=anbn(n=1,2,3,…),Tn為數(shù)列{cn}的前n項和,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在如圖所示的直角坐標系xOy中,點A,B是單位圓上的點,且A(1,0),∠AOB=$\frac{π}{3}$.現(xiàn)有一動點C在單位圓的劣弧$\widehat{AB}$上運動,設∠AOC=α.
(1)若tanα=$\frac{1}{3}$,求$\overrightarrow{OB}$•$\overrightarrow{OC}$的值;
(2)若$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,其中x,y∈R,求x+y的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.(Ⅰ)如果關于x的不等式|x+3|+|x-2|<a的解集不是空集,求參數(shù)a的取值范圍;
(Ⅱ)已知正實數(shù)a,b,且h=min{a,$\frac{{a}^{2}+^{2}}$},求證:0<h≤$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.給出下列命題:①若a<b<0,則$\frac{1}{a}$<$\frac{1}$;②若a>0,b>0,則$\frac{a+b}{2}$≥$\sqrt{ab}$≥$\frac{ab}{a+b}$;③若a<b<0,則a2>ab>b2;④lg9•lg 11<1;⑤若a>b,$\frac{1}{a}$>$\frac{1}$,則a>0,b<0;⑥正數(shù)x,y滿足$\frac{1}{x}$+$\frac{1}{y}$=1,則x+2y的最小值為6.其中正確命題的序號是②③④⑤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.某養(yǎng)豬廠建造一間背面靠墻的長方形豬圈,已知豬圈地面面積為18平方米,將豬圈分割成(如圖所示)六個小豬圈,豬圈高度為1米,豬圈每平方米的造價為500元,且不計豬圈背面和地面的費用與豬圈的厚度,問怎樣設計總造價最低,最低造價是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知向量$\overrightarrow a=(1,\sqrt{3})$,$\overrightarrow b=(cosx,sinx)$,函數(shù)$f(x)=\overrightarrow a•\overrightarrow b-1$.
(1)若f(x)=0,求x的集合;
(2)若$x∈[0,\frac{π}{2}]$,求f(x)的單調(diào)區(qū)間及最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知P,A,B是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$上不同的三點,且A,B關于原點對稱,若直線PA,PB的斜率乘積${k_{PA}}•{k_{PB}}=\frac{3}{4}$,則該雙曲線的離心率是( 。
A.2B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{7}}}{2}$D.$2\sqrt{2}$

查看答案和解析>>

同步練習冊答案