分析 x2+6>x2+4≥4x>0,可得x2+6為最大邊.由于此三角形為銳角三角形,可得cosθ=$\frac{({x}^{2}+4)^{2}+(4x)^{2}-({x}^{2}+6)^{2}}{2×4x×({x}^{2}+4)}$>0,解出即可得出.
解答 解:∵x2+6>x2+4≥4x>0,可得x2+6為最大邊.
由于此三角形為銳角三角形,∴cosθ=$\frac{({x}^{2}+4)^{2}+(4x)^{2}-({x}^{2}+6)^{2}}{2×4x×({x}^{2}+4)}$>0,
化為:x2>$\frac{5}{3}$,x>0,解得x$>\frac{\sqrt{15}}{3}$.
故答案為:x$>\frac{\sqrt{15}}{3}$.
點評 本題考查了余弦定理、不等式的解法、銳角三角形,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-2,-\sqrt{3})$ | B. | $[{-3,-\sqrt{3}}]$ | C. | $({-∞,-2})∪({\sqrt{3},+∞})$ | D. | $({-∞,-2})∪({-\sqrt{3},+∞})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
x | 0 | 2 | 4 | 6 |
y | a | 3 | 5 | 3a |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com