8.小李參加一種紅包接龍游戲:他在紅包里塞了12元,然后發(fā)給朋友A,如果A猜中,A將獲得紅包里的所有金額;如果A未猜中,A將當(dāng)前的紅包轉(zhuǎn)發(fā)給朋友B,如果B猜中,A、B平分紅包里的金額;如果B未猜中,B將當(dāng)前的紅包轉(zhuǎn)發(fā)給朋友C,如果C猜中,A、B和C平分紅包里的金額;如果C未猜中,紅包里的錢將退回小李的賬戶,設(shè)A、B、C猜中的概率分別為$\frac{1}{3}$,$\frac{1}{2}$,$\frac{1}{3}$,且A、B、C是否猜中互不影響.
(Ⅰ)求A恰好獲得4元的概率;
(Ⅱ)設(shè)A獲得的金額為X元,求X的分布列及X的數(shù)學(xué)期望.

分析 (1)根據(jù)相互獨(dú)立事件的概率公式計算即可;
(2)由題意,X的可能取值為0,4,6,12,計算對應(yīng)的概率值,寫出X的分布列與數(shù)學(xué)期望值.

解答 解:(1)A恰好獲得4元的概率為$\frac{2}{3}$×$\frac{1}{2}$×$\frac{1}{3}$=$\frac{1}{9}$;…(2分)
(2)X的可能取值為0,4,6,12,
則P(X=4)=$\frac{1}{9}$,P(X=0)=$\frac{2}{3}$×$\frac{1}{2}$×$\frac{2}{3}$=$\frac{2}{9}$,
P(X=6)=$\frac{2}{3}$×$\frac{1}{2}$=$\frac{1}{3}$,P(X=12)=$\frac{1}{3}$,…(5分)
所以X的分布列為:

X04612
P$\frac{2}{9}$$\frac{1}{9}$$\frac{1}{3}$$\frac{1}{3}$
數(shù)學(xué)期望為EX=0×$\frac{2}{9}$+4×$\frac{1}{9}$+6×$\frac{1}{3}$+12×$\frac{1}{3}$=$\frac{58}{9}$.…(12分)

點(diǎn)評 本題考查了相互獨(dú)立事件的概率計算以及離散型隨機(jī)變量的分布列與數(shù)學(xué)期望問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年吉林省高一下學(xué)期期末聯(lián)考數(shù)學(xué)試卷(解析版) 題型:選擇題

如果一個幾何體的三視圖如圖所示,主視圖與左視圖是邊長為2的正三角形、俯視圖輪廓為正方形,(單位長度:cm),則此幾何體的側(cè)面積是( )

A.cm B.cm2

C.8 cm D.14 cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知數(shù)列{an}的各項(xiàng)規(guī)律如下:
a1=1+1×2,a2=1+2×3,a3=1+3×4,a4=1+4×5…若bn=$\frac{{a}_{n}-1}{n}$,則數(shù)列{bn}的前n項(xiàng)和為$\frac{1}{2}$(n2+3n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.核算某項(xiàng)稅率,需用公式K=(1-7x)n(n∈N*).現(xiàn)已知K的展開式中各項(xiàng)的二項(xiàng)式系數(shù)之和是64,用四舍五入的方法計算當(dāng)$x=\frac{3}{700}$時K的值.若精確到0.001,其千分位上的數(shù)字應(yīng)是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.直線$\sqrt{3}x+3y+a=0$的傾斜角為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖所示,某幾何體的三視圖中,正視圖和俯視圖都是腰長為1的等腰直角三角形,則該幾何體的體積為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.1D.$1+\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若$\frac{1}{1+a}>1-a$,則實(shí)數(shù)a的取值范圍是(  )
A.a>0B.a>1C.a>-1且a≠0D.a<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.滿足條件AB=2,AC=$\sqrt{3}$BC的三角形ABC面積的最大值是$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案