4.在如圖所示的矩形ABCD中,AB=4,AD=2,E為線段BC上的點,則$\overrightarrow{AE}•\overrightarrow{DE}$的最小值為( 。
A.12B.15C.17D.16

分析 以B為坐標原點,分別以BC、BA所在直線為x、y軸建立平面直角坐標系,得到A、D的坐標,設(shè)出E的坐標,利用數(shù)量積的坐標運算求解.

解答 解:建立如圖所示平面直角坐標系,

則A(0,4),D(2,4),
設(shè)E(x,0)(0≤x≤2),
則$\overrightarrow{AE}=(x,-4)$,$\overrightarrow{DE}=(x-2,-4)$.
∴$\overrightarrow{AE}•\overrightarrow{DE}=x(x-2)+16$=x2-2x+16=(x-1)2+15.
∴當(dāng)x=1時,$\overrightarrow{AE}•\overrightarrow{DE}$的最小值為15.
故選:B.

點評 本題考查平面向量的數(shù)量積運算,建系起到事半功倍的效果,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=3sinx-4cosx(x∈R)的一個對稱中心是(x0,0),則tanx0的值為( 。
A.$-\frac{3}{4}$B.$\frac{3}{4}$C.$-\frac{4}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在四棱錐P-ABCD中,PC⊥底面ABCD,M是PD的中點,AC⊥AD,BA⊥BC,PC=AC=2BC,∠ACD=∠ACB.
(1)求證:PA⊥CM;
(2)求二面角M-AC-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知ω為正整數(shù),若函數(shù)f(x)=sinωx+cosωx在區(qū)間(-$\frac{π}{3}$,$\frac{π}{6}$)內(nèi)單調(diào)遞增,則函數(shù)f(x)最小正周期為(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知直線l1:(2sinθ-1)x+2cosθ•y+1=0,l2:x+$\sqrt{3}$y-3=0,若l1⊥l2,則$cos(θ-\frac{π}{6})$的值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知sinθ=$\frac{1}{3}$,θ∈(0,$\frac{π}{2}$),則tan2θ=$\frac{4\sqrt{2}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知各項不為零的數(shù)列{an}的前n項和為Sn,且a1=1,Sn=panan+1(n∈N*),p∈R.
(1)若a1,a2,a3成等比數(shù)列,求實數(shù)p的值;
(2)若a1,a2,a3成等差數(shù)列,
①求數(shù)列{an}的通項公式;
②在an與an+1間插入n個正數(shù),共同組成公比為qn的等比數(shù)列,若不等式(qn(n+1)(n+a)≤e對任意的n∈N*恒成立,求實數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}滿足$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{a_n}{2^n}={n^2}$+n.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=$\frac{{{{(-1)}^n}{a_n}}}{2}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在極坐標系中,點$(2,\frac{π}{3})$與點(1,0)的距離為( 。
A.2B.$\sqrt{4+\frac{π^2}{9}}$C.$\sqrt{1+\frac{π^2}{9}}$D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案