9.已知sinθ=$\frac{1}{3}$,θ∈(0,$\frac{π}{2}$),則tan2θ=$\frac{4\sqrt{2}}{7}$.

分析 由已知利用同角三角函數(shù)基本關(guān)系式可求cosθ,tanθ,進(jìn)而根據(jù)二倍角的正切函數(shù)公式即可計(jì)算得解.

解答 解:∵sinθ=$\frac{1}{3}$,θ∈(0,$\frac{π}{2}$),
∴cosθ=$\sqrt{1-si{n}^{2}θ}$=$\frac{2\sqrt{2}}{3}$,tan$θ=\frac{sinθ}{cosθ}$=$\frac{\sqrt{2}}{4}$,
∴tan2θ=$\frac{2tanθ}{1-ta{n}^{2}θ}$=$\frac{2×\frac{\sqrt{2}}{4}}{1-(\frac{\sqrt{2}}{4})^{2}}$=$\frac{4\sqrt{2}}{7}$.
故答案為:$\frac{4\sqrt{2}}{7}$.

點(diǎn)評 本題主要考查了同角三角函數(shù)基本關(guān)系式,二倍角的正切函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,平面ABCD⊥平面BCF,四邊形ABCD是菱形,∠BCF=90°.
(1)求證:BF=DF;
(2)若點(diǎn)E為AF的中點(diǎn),∠BCD=60°,且BC=CF=2,求四面體BDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={x|2x>1},B={x|x2-5x+6<0},則∁AB( 。
A.(2,3)B.(-∞,2]∪[3,+∞)C.(0,2]∪[3,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知公差不為零的等差數(shù)列{an}中,a2=4,且a1,a3,a9成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=an+2${\;}^{{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在如圖所示的矩形ABCD中,AB=4,AD=2,E為線段BC上的點(diǎn),則$\overrightarrow{AE}•\overrightarrow{DE}$的最小值為(  )
A.12B.15C.17D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖是一座橋的截面圖,橋的路面由三段曲線構(gòu)成,曲線AB和曲線DE分別是頂點(diǎn)在路面A、E的拋物線的一部分,曲線BCD是圓弧,已知它們在接點(diǎn)B、D處的切線相同,若橋的最高點(diǎn)C到水平面的距離H=6米,圓弧的弓高h(yuǎn)=1米,圓弧所對的弦長BD=10米.

(1)求弧$\widehat{BCD}$所在圓的半徑;
(2)求橋底AE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)$f(x)=cos(2x-\frac{2π}{3})+4{cos^2}x-2-\frac{3}{3x-π}(x∈[-\frac{11π}{12},\frac{19π}{12}])$所有零點(diǎn)之和為( 。
A.$\frac{2π}{3}$B.$\frac{4π}{3}$C.D.$\frac{8π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知a>2,函數(shù)f(x)=$\left\{\begin{array}{l}{log_a}({x+1})+x-2,x>0\\ x+4-{(\frac{1}{a})^{x+1}}\begin{array}{l}{\;}{x≤0}\end{array}\end{array}$若函數(shù)f(x)有兩個(gè)零點(diǎn)x1,x2,則( 。
A.?a>2,x1-x2=0B.?a>2,x1-x2=1C.?a>2,|x1-x2|=2D.?a>2,|x1-x2|=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=-\frac{\sqrt{2}}{2}t+5\sqrt{2}}\end{array}\right.$(t是參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程ρ2+2ρsin($θ+\frac{π}{4}$)=3.
(1)判斷直線l與曲線C的位置關(guān)系;
(2)設(shè)M(x,y)為曲線C上任意一點(diǎn),求x+y的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案