8.已知命題p:?x<0,x2>0,那么¬P是( 。
A.?x≥0,x2≤0B.?x≥0,x2≤0C.?x<0,x2≤0D.?x<0,x2≤0

分析 將存在量詞改寫為全稱量詞,再否定結(jié)論,從而得到答案.

解答 解:已知命題p:?x<0,x2>0,那么¬p是:?x<0,x2≤0,
故選:D.

點(diǎn)評(píng) 本題考查了命題的否定,將命題的否定和否命題區(qū)分開,本題屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.等差數(shù)列{an}的前n項(xiàng)和Sn,若a1=2,S5=15,則a19=( 。
A.10B.11C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x2+alnx.
(1)當(dāng)a=-2時(shí),求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若函數(shù)$g(x)=f(x)+\frac{2}{x}$在[1,+∞)上單調(diào),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.根據(jù)所給條件求直線的方程:
(1)直線過點(diǎn)(-4,0),傾斜角的正弦值為$\frac{\sqrt{10}}{10}$;
(2)直線過點(diǎn)(-2,1),且到原點(diǎn)的距離為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.斜率為$\sqrt{3}$的直線的傾斜角為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1)證明:PB∥平面AEC;
(2)設(shè)AP=1,AD=$\sqrt{3}$,三棱錐P-ABD的體積V=$\frac{{\sqrt{3}}}{4}$,求二面角D-AE-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中點(diǎn).求證:
(Ⅰ)PA∥平面BDE;
(Ⅱ)平面PAC⊥平面BDE;
(III)若PB與底面所成的角為60°,AB=2a,求三棱錐E-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如果隨機(jī)變量ξ~B(n,p),且E(ξ)=10,D(ξ)=8,則p等于( 。
A.$\frac{1}{7}$B.$\frac{1}{6}$C.$\frac{1}{5}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知正方形ABCD的邊長(zhǎng)為1,弧BD是以點(diǎn)A為圓心的圓。
(1)在正方形內(nèi)任取一點(diǎn)M,求事件“|AM|≤1”的概率;
(2)用大豆將正方形均勻鋪滿,經(jīng)清點(diǎn),發(fā)現(xiàn)大豆一共28粒,其中有22粒落在圓中陰影部分內(nèi),請(qǐng)據(jù)此估計(jì)圓周率π的近似值(精確到0.01).

查看答案和解析>>

同步練習(xí)冊(cè)答案