分析 (Ⅰ)連接OE,由題意可得OE∥AP,再由線面平行的判定可得PA∥平面BDE;
(Ⅱ)由PO⊥底面ABCD,得PO⊥BD,由已知可得AC⊥BD,再由線面垂直的判定可得BD⊥平面PAC,進(jìn)一步得到平面PAC⊥平面BDE;
(Ⅲ)由題意可得∠PBO=60°,求解三角形可得E到面BCD的距離=$\frac{{\sqrt{6}}}{2}$a,然后代入棱錐體積公式可得三棱錐E-BCD的體積.
解答 (Ⅰ)證明:連接OE,
由已知知O是AC的中點(diǎn),又E是PC的中點(diǎn),
∴OE∥AP,
又∵OE?平面BDE,PA?平面BDE.
∴PA∥平面BDE;
(Ⅱ)解:∵PO⊥底面ABCD,∴PO⊥BD,
又∵AC⊥BD,且AC∩PO=O,
∴BD⊥平面PAC,
而B(niǎo)D?平面BDE,
∴平面PAC⊥平面BDE;
(Ⅲ)解:∵PB與底面所成的角為600,且PO⊥底面ABCD,∴∠PBO=60°,
∵AB=2a,∴BO=$\sqrt{2}$a PO=$\sqrt{6}$a,
∴E到面BCD的距離=$\frac{{\sqrt{6}}}{2}$a,
∴三棱錐E-BCD的體積V=$\frac{1}{3}×2{a^2}×\frac{{\sqrt{6}}}{2}a=\frac{{\sqrt{6}}}{3}{a^3}$.
點(diǎn)評(píng) 本題考查直線與平面、平面與平面垂直的判定,考查空間想象能力和思維能力,訓(xùn)練了棱錐體積的求法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0.19 | B. | 0.20 | C. | 0.21 | D. | 0.22 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 16 | B. | 20 | C. | 24 | D. | 28 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x≥0,x2≤0 | B. | ?x≥0,x2≤0 | C. | ?x<0,x2≤0 | D. | ?x<0,x2≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{2}{3}$ | C. | $\frac{5}{7}$ | D. | $\frac{5}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,3) | B. | (2,3) | C. | (1,2) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com