精英家教網(wǎng)如圖,在體積為1的三棱錐A-BCD側(cè)棱AB、AC、AD上分別取點(diǎn)E、F、G,使AE:EB=AF:FC=AG:GD=2:1,記O為三平面BCG、CDE、DBF的交點(diǎn),則三棱錐O-BCD的體積等于( 。
A、
1
9
B、
1
8
C、
1
7
D、
1
4
分析:畫(huà)出圖形,三棱錐O-BCD的體積,轉(zhuǎn)化為線段的長(zhǎng)度比,充分利用直線的平行進(jìn)行推到,求出比例即可.
解答:精英家教網(wǎng)解:AA'為正三棱錐A-BCD的高;OO'為正三棱錐O-BCD的高
因?yàn)榈酌妗鰾CD相同,則它們的體積比為高之比
已知三棱錐A-BCD的體積為1
所以,三棱錐O-BCD的體積為:
OO′
AA′
…(1)
由前面知,F(xiàn)G∥CD且
FG
CD
=
2
3

所以由平行得到,
FG
CD
=
GN
NC
=
2
3
所以,
GN
GC
=
2
5
[面BCG所在的平面圖如左上角簡(jiǎn)圖]
同理,
GP
GB
=
2
5

則,
GN
GC
=
GP
GB

所以,PN∥BC
那么,
PN
BC
=
GN
GC
=
2
5
亦即,
GT
GQ
=
GN
GC
=
2
5
設(shè)GQ=x
那么,GT=
2
5
x
則,QT=GQ-GT=x-
2x
5
=
3x
5
而,
TO
OQ
=
TN
BQ
=
GN
GC
=
2
5
所以:
TO
TQ
=
2
7

則,TO=
2
7
QT=
2
7
×
3
5
x=
6x
35

所以:GO=GT+TO=
2
5
x+
6x
35
=
4x
7
所以,OQ=GQ-GO=x-
4x
7
=
3x
7

又,
OQ
GQ
=
OO′
GG′

所以,
OO′
GG′
=
3x
7
x
=
3
7
…(2)
且,
DG
DA
=
GG′
AA′

所以:
GG′
AA′
=
1
3
…(3)
由(2)*(3)得到:
OO′
AA′
3
7
× 
1
3
=
1
7
代入到(1)得到:
三棱錐O-BCD的體積就是
OO′
AA′
=
1
7
點(diǎn)評(píng):本題考查學(xué)生對(duì)三棱錐的認(rèn)識(shí),以及必要的輔助線的作法,是難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在體積為1的三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AC⊥AB,AC=AA1=1,P為線段AB上的動(dòng)點(diǎn).
(1)求證:CA1⊥C1P;
(2)求CA1與平面AB1C1所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•藍(lán)山縣模擬)如圖,在體積為1的三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AB⊥AC,AC=AA1=1,P為線段AB上的動(dòng)點(diǎn).
(1)求證:CA1⊥C1P;
(2)當(dāng)AP為何值時(shí),二面角C1-PB1-A1的大小為
π6
?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在體積為1的三棱錐A—BCD的側(cè)棱AB,AC,AD上分別取點(diǎn)E,F,G,使AE∶EB=AF∶FC=AG∶GD=2∶1,記O為三平面BCG,CDE,DBF的交點(diǎn),則三棱錐O—BCD的體積等于(    )

A.                   B                  C.                 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在體積為1的三棱錐A—BCD側(cè)棱AB、AC、AD上分別取點(diǎn)E、F、G, 使AE : EB=AF : FC=AG : GD=2 : 1,記O為三平面BCG、CDE、DBF的交點(diǎn),則三棱錐O—BCD的體積等于        (    )

 

 

 

 

 

 

 

 

 

A.        B.     C.           D.

查看答案和解析>>

同步練習(xí)冊(cè)答案