分析 (1)設(shè)圓心為(2a,a),通過(guò)圓C與y軸的正半軸相切,得到半徑r=2a.利用該圓截x軸所得弦的長(zhǎng)為2$\sqrt{3}$,列出方程求解即可.
(2)設(shè)A(x1,y1),B(x2,y2),利用韋達(dá)定理以及判別式,結(jié)合直線的斜率關(guān)系,即可求出b的值.
解答 解:(1)因?yàn)閳AC的圓心在直線x-2y=0上,所以可設(shè)圓心為(2a,a).
因?yàn)閳AC與y軸的正半軸相切,所以a>0,半徑r=2a.
又因?yàn)樵搱A截x軸所得弦的長(zhǎng)為2$\sqrt{3}$,
所以a2+($\sqrt{3}$)2=(2a)2,解得a=1.…(2分)
因此,圓心為(2,1),半徑r=2.
所以圓C的標(biāo)準(zhǔn)方程為(x-2)2+(y-1)2=4.…(4分)
(2)由直線l:y=-2x+b與圓C,消去y,得(x-2)2+(-2x+b-1)2=4.
整理得5x2-4bx+(b-1)2=0.(★)…(5分)
由△=(-4b)2-4×5(b-1)2>0,得b2-10b+5<0(※)…(6分)
設(shè)A(x1,y1),B(x2,y2),則x1+x2=$\frac{4b}{5}$,x1x2=$\frac{(b-1)^{2}}{5}$ (7分)
因?yàn)橐訟B為直徑的圓過(guò)原點(diǎn)O,可知x1x2+y1y2=0,即x1x2+(-2x1+b)(-2x2+b)=0.
化簡(jiǎn)得5x1x2-2b(x1+x2)+b2=0,即(b-1)2-2b•$\frac{4b}{5}$+b2=0.
整理得2b2-10b+5=0.解得b=$\frac{5±\sqrt{15}}{2}$.…(9分)
當(dāng)b=$\frac{5±\sqrt{15}}{2}$時(shí),2b2-10b+5=0,b2-10b+5=-b2.③
由③,得b≠0 從而b2-10b+5=-b2<0
可見(jiàn),b=$\frac{5±\sqrt{15}}{2}$時(shí)滿足不等式(※).b=$\frac{5±\sqrt{15}}{2}$均符合要求.…(10分)
點(diǎn)評(píng) 本題考查圓的方程的綜合應(yīng)用,圓的方程的求法,直線與圓的位置關(guān)系的綜合應(yīng)用,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | -$\frac{3}{4}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com