A. | 存在α,使得A′E⊥面A′BC | B. | 存在α,使得A′B⊥面A′CD | ||
C. | 存在α,使得A′E⊥面A′CD | D. | 存在α,使得A′B⊥面A′DE |
分析 Rt△ABE繞BE旋轉(zhuǎn)的幾何體是兩個(gè)圓錐的組合體,能推導(dǎo)出某個(gè)位置存在母線A′E⊥AE,即A′E⊥BC,從而得到存在α,使得EA′⊥面A′BC.
解答 解:作AF⊥BE于F,交DC于G,則當(dāng)折疊時(shí),A′的投影在FG上,
設(shè)正方形的邊長(zhǎng)為1,則A′B=1,BD=$\sqrt{2}$,
∵A′E+ED=1>A′D,∴∠BA′D≠90°,故D和B錯(cuò)誤;
∵二面角A′-BE-C的大小為α(0<α<π),不存在母線EA′⊥A′C,
∴不可能存在α,使得EA′⊥面A′CD,故C錯(cuò)誤;
Rt△ABE繞BE旋轉(zhuǎn)的幾何體是兩個(gè)圓錐的組合體,
∵∠A′BE<45°,45°<∠A′EB<90°,
∴某個(gè)位置存在母線A′E⊥AE,即A′E⊥BC,
∵二面角A′-BE-C的大小為α(0<α<π),
∴存在α,使得EA′⊥面A′BC,故A正確.
故選:A.
點(diǎn)評(píng) 本題考查命題真假的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x,y∈R,若x+y≠0,則x≠1且y≠-1 | |
B. | 命題“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3>0” | |
C. | a∈R,“$\frac{1}{a}$<1”是“a>1”的必要不充分條件 | |
D. | “若am2<bm2,則a<b”的逆命題為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,$\frac{5}{2}$) | B. | (-$\frac{5}{2}$,+∞) | C. | ($\frac{5}{2}$,+∞) | D. | (-1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com