分析 (1)要判斷兩個三角形相似,可以根據(jù)三角形相似判定定理進(jìn)行證明,但注意觀察已知條件中給出的是角的關(guān)系,故采用判定定理1更合適,故需要再找到一組對應(yīng)角相等,由圓周角定理,易得滿足條件的角.
(2)根據(jù)(1)的結(jié)論,我們可得三角形對應(yīng)成比例,由此△ABC的面積S=$\frac{1}{2}$AB•AC=$\frac{1}{2}$AD•AE,即可得出結(jié)論.
解答 (1)證明:由已知△ABC的角平分線為AD,
可得∠BAE=∠CAD
因為∠AEB與∠ACB是同弧上的圓周角,
所以∠AEB=∠ACD
故△ABE∽△ADC.
(2)解:因為△ABE∽△ADC,
所以$\frac{AB}{AE}=\frac{AD}{AC}$,
即AB•AC=AD•AE.
又AD=1.6,AE=3,所以S=$\frac{1}{2}$AB•AC=$\frac{1}{2}$AD•AE=2.4,
點評 相似三角形有三個判定定理:判定定理1:兩角對應(yīng)相等的兩個三角形相似; 判定定理2:三邊對應(yīng)成比例的兩個三角形相似;判定定理3:兩邊對應(yīng)成比例,并且夾角相等的兩個三角形相似.在證明三角形相似時,要根據(jù)已知條件選擇適當(dāng)?shù)亩ɡ恚?/p>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{13}{16}$ | B. | $\frac{4}{243}$ | C. | $\frac{13}{243}$ | D. | $\frac{80}{243}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1-$\sqrt{10}$) | B. | $(-1-\sqrt{10},-1+\sqrt{10})$ | C. | $[{-1+\sqrt{10},+∞})$ | D. | $[{-1-\sqrt{10},-1+\sqrt{10}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com