A. | $\frac{x^2}{21}-\frac{y^2}{9}=1$ | B. | $\frac{x^2}{9}-\frac{y^2}{21}=1$ | C. | $\frac{x^2}{3}-\frac{y^2}{9}=1$ | D. | $\frac{x^2}{9}-\frac{y^2}{3}=1$ |
分析 由F1A⊥l1,則丨F1A丨=b,則丨OA丨=a,ABO是邊長為$\sqrt{3}$的等邊三角形,a=$\sqrt{3}$,求得A點(diǎn)坐標(biāo),代入漸近線方程,即可求得b的值,求得雙曲線方程.
解答 解:過A作AD⊥F1F2,雙曲線的漸近線方程y=±$\frac{a}$x,
由F1A⊥l1,則丨F1A丨=b,則丨OA丨=a,
由ABO是邊長為$\sqrt{3}$的等邊三角形,丨OA丨=a=$\sqrt{3}$,
∴丨AD丨=$\frac{\sqrt{3}}{2}$×$\sqrt{3}$=$\frac{3}{2}$,
∴D(-$\frac{\sqrt{3}}{2}$,-$\frac{3}{2}$),
由D在漸近線y=$\frac{a}$x,解得:b=3,
∴雙曲線的標(biāo)準(zhǔn)方程:$\frac{{x}^{2}}{3}-\frac{{y}^{2}}{9}=1$,
故選:C.
點(diǎn)評(píng) 本題考查雙曲線的簡單幾何性質(zhì),考查雙曲線的漸近線方程,考查數(shù)形結(jié)合思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $±\sqrt{3}$ | C. | 2 | D. | $±\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com