5.若非零向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=4|$\overrightarrow$|=2,$\overrightarrow{a}$,$\overrightarrow$的夾角為120°,則(2$\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$=-$\frac{3}{4}$.

分析 根據(jù)向量的數(shù)量積公式計(jì)算即可.

解答 解:∵非零向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=4|$\overrightarrow$|=2,$\overrightarrow{a}$,$\overrightarrow$的夾角為120°,
∴$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|cos120°=2×$\frac{1}{2}$×(-$\frac{1}{2}$)=-$\frac{1}{2}$,
∴(2$\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$=2$\overrightarrow{a}$•$\overrightarrow$+|$\overrightarrow$|2=2×(-$\frac{1}{2}$)+$\frac{1}{4}$=-$\frac{3}{4}$,
故答案為:-$\frac{3}{4}$.

點(diǎn)評 本題考查了向量的數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,四棱錐P-ABCD,底面ABCD是邊長為2的菱形,$∠ABC=\frac{π}{3}$,且PA⊥平面ABCD.
(Ⅰ)證明:平面PAC⊥平面PBD;
(Ⅱ)若平面PAB與平面PCD的夾角為$\frac{π}{3}$,試求線段PA的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\frac{{\sqrt{3}}}{2}sin(2x+\frac{π}{3})-{cos^2}x+\frac{1}{2}$(x∈R),則下列說法正確的是(  )
A.函數(shù)f(x)的最小正周期為$\frac{π}{2}$
B.函數(shù)f(x)的圖象關(guān)于y軸對稱
C.點(diǎn)$(\frac{π}{6},0)$為函數(shù)f(x)圖象的一個(gè)對稱中心
D.函數(shù)f(x)的最大值為$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知i是虛數(shù)單位,若復(fù)數(shù)z=$\frac{m+i}{1+2i}$(m∈R)是純虛數(shù),則m=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)離心率為$\frac{\sqrt{3}}{2}$,它的一個(gè)頂點(diǎn)在拋物線x2=4y的準(zhǔn)線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),一條直線l與橢圓交于M、N兩點(diǎn),直線OM、ON的斜率之積為-$\frac{1}{4}$,求△MON的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的各項(xiàng)均為正數(shù),a1=1,前n項(xiàng)和為Sn,且an+12-nλ2-1=2λSn,λ為正常數(shù).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=$\frac{{S}_{n}}{{a}_{n}}$,Cn=$\frac{1}{{S}_{n}}$+$\frac{1}{{S}_{k-n}}$(k,n∈N*,k≥2n+2).
       求證:①bn<bn+1
                 ②Cn>Cn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)=$\left\{\begin{array}{l}(a-2)x,x≥1\\{(\frac{1}{2})^x}-1,x<1\end{array}$是R上的單調(diào)遞減函數(shù),則實(shí)數(shù)a的取值范圍是a≤$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦點(diǎn)分別為F1,F(xiàn)2,兩條漸近線分別為l1,l2,過F1作F1A⊥l1于點(diǎn)A,過F2作F2B⊥l2于點(diǎn)B,O為原點(diǎn),若△ABO是邊長為$\sqrt{3}$的等邊三角形,則雙曲線的方程為( 。
A.$\frac{x^2}{21}-\frac{y^2}{9}=1$B.$\frac{x^2}{9}-\frac{y^2}{21}=1$C.$\frac{x^2}{3}-\frac{y^2}{9}=1$D.$\frac{x^2}{9}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.以下5個(gè)命題,其中真命題的個(gè)數(shù)有( 。
①從等高條形圖中可以看出兩個(gè)變量頻數(shù)的相對大小
②兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)r的絕對值越接近于1;
③在回歸直線方程$\hat y$=0.2x+12中,當(dāng)解釋變量x每增加一個(gè)單位時(shí),預(yù)報(bào)變量$\hat y$平均增加0.2個(gè)單位;
④若K2的觀測值為k=6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺病;
 ⑤殘差圖中,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域內(nèi),說明選用的模型比較合適,帶狀區(qū)域的寬度越窄,說明擬合精度越高.
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案