16.已知平面直角坐標(biāo)系中,曲線C1的直角坐標(biāo)方程為(x+1)2+(y-1)2=1,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρcos(θ+$\frac{π}{4}$)=2$\sqrt{2}$
(Ⅰ)求曲線C1與曲線C2的參數(shù)方程
(Ⅱ)若點(diǎn)A,B分別在曲線C1與曲線C2上,求|AB|的最小值.

分析 (Ⅰ)利用三種方程的轉(zhuǎn)化方法,即可求曲線C1與曲線C2的參數(shù)方程
(Ⅱ)若點(diǎn)A,B分別在曲線C1與曲線C2上,求|AB|的最小值,即求出A到曲線C2距離的最小值.

解答 解:(Ⅰ)曲線C1的直角坐標(biāo)方程為(x+1)2+(y-1)2=1,參數(shù)方程為$\left\{\begin{array}{l}{x=-1+cosα}\\{y=1+sinα}\end{array}\right.$(α為參數(shù));
曲線C2的極坐標(biāo)方程為ρcos(θ+$\frac{π}{4}$)=2$\sqrt{2}$,直角坐標(biāo)方程為x-y-4=0,參數(shù)方程為$\left\{\begin{array}{l}{x=4+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù));
(Ⅱ)設(shè)A(-1+cosα,1+sinα),
A到曲線C2的距離d=$\frac{|-1+cosα-1-sinα-4|}{\sqrt{2}}$=$\frac{6+\sqrt{2}sin(α-45°)}{\sqrt{2}}$,
∴sin(α-45°)=-1時(shí),|AB|的最小值為3$\sqrt{2}$-1.

點(diǎn)評(píng) 本題考查三種方程的轉(zhuǎn)化,考查點(diǎn)到直線距離公式的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列說(shuō)法中正確的有:已知求得線性回歸方程y=bx+a,相關(guān)系數(shù)r,①若r>0,則x增大時(shí),y也相應(yīng)增大;②若r<0,則x增大時(shí),y也相應(yīng)增大;③若r=1,或r=-1,則x與y的關(guān)系完全對(duì)應(yīng)(有函數(shù)關(guān)系),在散點(diǎn)圖上各個(gè)散點(diǎn)均在一條直線上.( 。
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,E是CD上一點(diǎn),AB=AD=3,AA1=2,CE=1,P是AA1上一點(diǎn),且DP∥平面AEB1,F(xiàn)是棱DD1與平面BEP的交點(diǎn),則DF的長(zhǎng)為( 。
A.1B.$\frac{8}{9}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期為4π,且其圖象向右平移$\frac{π}{5}$個(gè)單位后得到函數(shù)g(x)=sinωx的圖象,則φ等于( 。
A.-$\frac{π}{10}$B.-$\frac{π}{5}$C.$\frac{π}{10}$D.$\frac{π}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若以橢圓$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1的右頂點(diǎn)為圓心的圓與直線x+$\sqrt{3}$y+2=0相切,則該圓的標(biāo)準(zhǔn)方程是(x-2)2+y2=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列說(shuō)法正確的是( 。
A.“a>b”是“a2>b2”的充分不必要條件
B.命題“?x0∈R,$x_0^2+1<0$”的否定是“?x∈R,x2+1>0”
C.關(guān)于x的方程x2+(a+1)x+a-2=0的兩實(shí)根異號(hào)的充要條件是a<1
D.命題“在△ABC中,若A>B,則sinA>sinB”的逆命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)f(x)=$\frac{sinx}{sinx+2sin\frac{x}{2}}$,則f(x)最小正周期為4π,奇偶性為偶.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.將石子擺成如圖的梯形形狀,稱(chēng)數(shù)列5,9,14,20,…為“梯形數(shù)”.根據(jù)圖形的構(gòu)成,此數(shù)列的第2 016項(xiàng)與5的差,即a2016-5=(  )
A.2 018×2 014B.2 018×2 013C.1 011×2 015D.1 010×2 012

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖所示,兩個(gè)陰影部分的面積之和可表示為( 。
A.$\int_{-1}^4{f(x)}dx$B.$-\int_{-1}^4{f(x)}dx$
C.$\int_3^4{f(x)}dx-\int_{-1}^3{f(x)dx}$D.$\int_{-1}^3{f(x)}dx-\int_3^4{f(x)dx}$

查看答案和解析>>

同步練習(xí)冊(cè)答案