11.若以橢圓$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1的右頂點為圓心的圓與直線x+$\sqrt{3}$y+2=0相切,則該圓的標(biāo)準(zhǔn)方程是(x-2)2+y2=4.

分析 求得橢圓的右頂點,利用點到直線的距離公式,即可圓的半徑,即可求得圓的標(biāo)準(zhǔn)方程.

解答 解:橢圓$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1的右頂點(2,0),
則圓心(2,0),設(shè)圓心到直線x+$\sqrt{3}$y+2=0的距離為d,
則d=$\frac{丨2×1+\sqrt{3}×0+2丨}{\sqrt{{1}^{2}+(\sqrt{3})^{2}}}$=2,
∴該圓的標(biāo)準(zhǔn)方程的方程(x-2)2+y2=4,
故答案為:(x-2)2+y2=4.

點評 求得橢圓的右頂點,利用點到直線的距離公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知圓N的圓心在直線l:3x-4y+7=0,且圓N與y軸切于點(0,4).
(1)直線l1∥l,且與圓N相切,求直線l1的方程;
(2)若過點D(3,6)的直線l2被圓N所截的弦長為$4\sqrt{2}$,求直線l2的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某三棱錐的三視圖如圖所示,則俯視圖的面積為( 。
A.4B.8C.4$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若直線ax+y-3=0與2x-y+2=0垂直,則二項式${(\frac{x}{a}-\frac{1}{x})}^{5}$展開式中x3的系數(shù)為-80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若實數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y+2≥0}\\{2x+y-6≤0}\\{0≤y≤3}\end{array}\right.$,且z=3x-y,則z的最大值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知平面直角坐標(biāo)系中,曲線C1的直角坐標(biāo)方程為(x+1)2+(y-1)2=1,以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρcos(θ+$\frac{π}{4}$)=2$\sqrt{2}$
(Ⅰ)求曲線C1與曲線C2的參數(shù)方程
(Ⅱ)若點A,B分別在曲線C1與曲線C2上,求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若sin($\frac{π}{4}$-α)=$\frac{3}{5}$,-$\frac{π}{4}$<α<0,則cos2α=( 。
A.-$\frac{24}{25}$B.$\frac{1}{5}$C.-$\frac{1}{5}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)$y=sin(2x+\frac{π}{3})$圖象中的一條對稱軸的方程是( 。
A.$x=\frac{π}{12}$B.$x=\frac{π}{6}$C.$x=\frac{π}{3}$D.$x=-\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知$f(k)=sin\frac{kπ}{4}$,k∈Z.
(1)求證:f(1)+f(2)+…+f(8)=f(9)+f(10)+…+f(16);
(2)求f(1)+f(2)+…+f(2020)的值.

查看答案和解析>>

同步練習(xí)冊答案