4.對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點(diǎn)”;任何一個三次函數(shù)都有對稱中心,且“拐點(diǎn)”就是對稱中心.設(shè)函數(shù)g(x)=2x3-3x2+$\frac{1}{2}$,則g($\frac{1}{100}$)+g($\frac{2}{100}$)+…+g($\frac{99}{100}$)=( 。
A.100B.50C.$\frac{99}{2}$D.0

分析 由題意對已知函數(shù)求兩次導(dǎo)數(shù)可得圖象關(guān)于點(diǎn)($\frac{1}{2}$,0)對稱,即f(x)+f(1-x)=0,由此可得到結(jié)論.

解答 解:∵g(x)=2x3-3x2+$\frac{1}{2}$,
∴g′(x)=6x2-6x,g''(x)=12x-6,
由g''(x)=0,得x=$\frac{1}{2}$,
又f($\frac{1}{2}$)=2×$(\frac{1}{2})^{3}-3×(\frac{1}{2})^{2}+\frac{1}{2}$=0,
∴故函數(shù)g(x)關(guān)于點(diǎn)($\frac{1}{2}$,0)對稱,
∴g(x)+g(1-x)=0,
∴g($\frac{1}{100}$)+g($\frac{2}{100}$)+…+g($\frac{99}{100}$)=49×$0+f(\frac{50}{100})$=f($\frac{1}{2}$)=0.
故選:D.

點(diǎn)評 本題主要考查導(dǎo)數(shù)的基本運(yùn)算,利用條件求出函數(shù)的對稱中心是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.球O與銳二面角α-l-β的兩半平面相切,兩切點(diǎn)間的距離為$\sqrt{3}$,O點(diǎn)到交線l的距離為2,則球O的體積為(  )
A.$\frac{4π}{3}$B.C.12πD.$4\sqrt{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.log3$\sqrt{27}$+lg25+lg4-7${\;}^{lo{g}_{7}2}$-(-9.8)0=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知sinA-sinC(cosB+$\frac{\sqrt{3}}{3}$sinB)=0.
(1)求角C的大小;    
(2)若c=2,且△ABC的面積為$\sqrt{3}$,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.橢圓C的焦點(diǎn)在x軸上,一個頂點(diǎn)是拋物線E:y2=16x的焦點(diǎn),過焦點(diǎn)且垂直于長軸的弦長為2,則橢圓的離心率為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{14}}{4}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,已知圓O是△ABC的外接圓,AB=BC,AD是 BC邊上的高,AE 是圓O的直徑,過點(diǎn)C作圓O的切線交BA的延長線于點(diǎn)F.
(Ⅰ)求證:AC•BC=AD•AE;    
(Ⅱ)若AF=2,CF=2$\sqrt{2}$,求AE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在公差不為零的等差數(shù)列{an}中,已知a2=3,且a1、a3、a7成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,記bn=$\frac{9}{{2{S_{3n}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x3+ax2-a2x+2.
(1)若a=-1,求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)若a≠0 求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的動點(diǎn),則|$\overrightarrow{PA}$+$\overrightarrow{PB}$|的最小值為3.

查看答案和解析>>

同步練習(xí)冊答案